
Dynabook Redux

Dr. David West – Dr. Margaret Young – Dr. Jane Quillien
Department of Business, Media, and Technology

New Mexico Highlands University
Las Vegas, New Mexico, USA

dmwest@nmhu.edu -- young_m@nmhu.edu

Abstract—We describe an innovative new program in software-
driven systems design. The program is experience driven and
competency based. Students are apprentices in the traditional
sense of the term. The goal is to establish and nurture a
community of master software developers / system designers.
This program creates some unique support needs as well. Core
to meeting these needs is a tablet based computer with
curriculum delivery, collaborative development support,
communication support, and intra-community social networking
tools. We describe the development of the desired support tool
and link those efforts to the Alan Kay (1968) depiction of a
Dynabook.

Education, dynabook, community, web learning, software

I. INTRODUCTION
In 1995, New Mexico Highlands University (NMHU)

piloted a new program in software development. The program
focused on experiential learning and demonstrated mastery of
approximately 500 competencies instead of courses. The pilot
ran for one year with some remarkable achievements: 100%
freshman retention, 50% female and 85% minority
participation, 100% placement rate for all eligible students at
pilot termination, and 50% of students (14) published papers at
premier refereed conferences.

Today, NMHU has evolved the pilot into both a Bachelor
and Master degree program in Software-driven Systems Design
(SSD). These programs are radical departures, both in focus
and structure, from existing computer science, informatics,
software engineering, and management information systems
degree programs.

Both programs present significant challenges. Textbooks,
for example, are of little use because the program subdivides
the curriculum into smaller units than the typical semester or
quarter course, and the delivery of those units is “on-demand.”
In the absence of a support tool capable of enabling the
learning, development, and social networking objectives of the
program it was necessary to design and begin development of
the needed device. The inspiration was two-fold: the
Dynabook [1] concept of Alan Kay and the fictional “young
ladies primer” described in Neal Stephenson’s book, Diamond
Age[2].

II. SOFTWARE-DRIVEN SYSTEMS DESIGN
It is useful to begin with a discussion of the degree

programs with an emphasis on their goals and the ways in
which they are different from the typical higher education
program.

A. Program / Degree Focus
Computer Science (CS) and Software Engineering (SE) are

all about the ‘artifact’ – the computer and the program. The
Software-driven Systems Design (SSD) is all about the system
in which computing artifacts (hardware plus software) are
deployed and the effects on the system that arise from that
deployment.

“Systems,” in CS and SE are mechanical, deterministic, and
complicated – an idea borrowed from classical (pre-quantum)
physics. Systems in SSD are living, highly dynamic, adaptive,
and complex.

For CS and SE, problems to be solved are subject to formal
definition and precise requirements and are solved by
constructing a machine that satisfies requirements. For SSD
the problems to be solved are ill-formed, often vaguely
defined, lacking sufficient information, and often subject to
redefinition as a function of increasing knowledge of the
problem and potential solutions. This kind of problem solution
requires thinking skills beyond “computational thinking” –
skills that include metaphoric reasoning and design thinking.

SSD differs from Management Information Systems (MIS)
as well. Both programs are concerned with ‘process’ and
‘management’ issues applied to the act of software creation and
deployment. MIS is grounded in the philosophy of software
engineering and the prevailing business philosophy of
‘scientific management.” SSD is grounded in ideas of ‘art,’
‘craft’ and ‘coaching.’

SSD values “Thriving on Chaos [3]” and “Embracing
Change [4]” instead of “Planning the Work and Working the
Plan.”

B. Curriculum
SSD, CS, SE, and MIS share some learning goals. In all

four areas it is necessary to understand the nature of a program,
programming languages, data constructs, modularity, and well-

Support for the completion and presentation of this paper was supplied by
Los Alamos National Laboratory.

known formal or patterned solutions like algorithms and
mathematical applications.

Unlike CS or SE, SSD does not emphasize the theory of
computation, proof, or machine level software (including
operating systems, compilers, device drivers, or network
infrastructure).

SSD adds curricular material including topics like best
practices, tools, communications (written, oral, visual), reading
(both purposeful and for pleasure, following the dictum of Alan
Kay, “Those that do not read for pleasure cannot read for
purpose.”), and the concepts and history behind those topics.
Significant amounts of material from other disciplines
including: cultural anthropology, philosophy, history,
sociology, psychology, music, design, and mathematics; are
part of the SSD curriculum.

The breadth of the curriculum is more than would normally
be encountered in two majors or two graduate degrees. It is
possible to deliver this volume of content because of the way it
is modularized and delivered. Curricular modules are roughly
equivalent to 16-32 hours of student-material interaction.
Instead of 16-20 three credit hour courses, students are
responsible for mastering 150+ discrete learning modules.

Each module is self-contained and Web-based. Each
module incorporates background material, integrative links to
other modules, topical content, exercises and examples, usually
video ‘lectures,’ and self-evaluations. A ‘final exam’
completes the module. Completion of modules is self-paced.

Each topic area (each module) roughly equates to a
competency. Each competency is assessed at seven different
levels. Completion of the on-line module establishes
competency level 1 – “concepts and vocabulary.” The other
six competency levels are:

• 2- demonstrate application of knowledge under
supervision;

• 3- demonstrate application of knowledge
independently;

• 4- demonstrate application of knowledge in a
different domain or problem context;

• 5- mentor others in the application of the
knowledge;

• 6- improve or create instructional materials;

• 7- make an original contribution (whitepaper,
conference paper/presentation, or publication) to
the topic area;

These competencies are assessed in the context of a Studio
experience - while working on real world projects on behalf of
paying customers.

Each learning module is delivered “on demand” in the
context of a project. Students are motivated to learn the
material because they need it to advance the project (for which
they are paid as apprentices). They are able to immediately
apply the knowledge – ensuring retention – and to integrate it
with other elements of knowledge thereby promoting

integration of knowledge from diverse subject areas. The
effectiveness of this approach can be anecdotally illustrated by
a student in the pilot program, a freshman, that entered the
program with zero computer knowledge or experience (could
not cut and past in a word processor) and a semester later was
mentoring other students in Java and J2EE on a project for the
New Mexico State Engineer’s Office.

Each module is structured on a modified pattern format [5]
[6]:

• Context – in which the knowledge is found and
found to be useful

• Problem – the kind of issues or problems that are
amenable to application of the knowledge

• Knowledge description – the substance of the
module

• Examples – how the knowledge has been found
useful plus examples of applications (e.g. in
program code) of the use of the knowledge

• Variations and Connections – themes, extensions,
elaborations, and contrarian positions with regard
the knowledge, plus connections to other learning
modules and areas of study.

• Resources – Web, book and paper references.

• Self-evaluations.

• Final Exam

III. THE STUDIO
The core of the SSD program is the Studio. Students (and

faculty) are expected to spend roughly thirty-six hours a week
in the Studio. The Studio is itself a “one-room schoolhouse”
with everyone from freshmen to graduate students in one room
at the same time.

The primary activity in the Studio (roughly 65% of the
time) is focused on development projects. Students use an
Agile approach (exploratory, iterative, incremental) and work
side-by-side with professional developers (thereby gaining the
kind of tacit knowledge of the discipline that is normally
learned only after leaving school).

Other activities in the Studio include student-instructor
interaction and feedback on the learning modules, individual
and small group “learning spikes” (the closest approximation to
typical lecture/discussion), and weekly reading and writing
workshops [7]. All work in the Studio – development and
learning – is done is pairs and small teams (another Agile
derived practice). All work is collaborative and students learn
a teamwork model instead of the typical individual competition
model of most higher education.

Students move through a variety of different roles in the
Studio, including: developer, tools maven, mentor, coach (we
do not have project leads or project managers per se), designer,
customer liaison, tester, and systems administrator. Students
accumulate a portfolio of commercial grade work that they
have completed or to which they have made significant

contributions. They also have established ties with the
professionals working in the Studio and with companies that
sponsor projects. Graduates have a transcript, a portfolio, a
professional network, and a reputation. This makes them
highly employable when they leave the program.

IV. COMMUNITY
An implicit objective of this program is to initiate the

formation of a “community of practice.” In the most trivial
sense, this means a professional social network akin to Linked-
In. But it differs in significant ways. First, it is a closed
community – only those who have participated in the program
– as student, mentor, project sponsor, or faculty. Second, it
provides participants with a “reputation” based on empirical
shared experience – providing a very real kind of
“certification.”

The software world has traditionally been subject to fads –
in technology and in methodology. As soon as a fad takes
hold, seemingly everyone immediately claims to be an expert
in that ‘new thing.’ This is of course, not true, and some means
of sifting the wheat from the chaff is required. The traditional
answer has been certification. But certification suffers from
the fatal flaw of being based solely on one’s ability to pass a
test – occasionally with the addition of some kind of work
sample.

In the SSD community you will have a reputation – a
personal kind of certification. Some number, ‘X,’ of the ‘Y’
number of people who have worked at your side, under your
direction, or as your direct supervisor or professor personally
attest to the fact that you are a rank ‘Z’
programmer/analyst/network engineer/or other title. This
reputation indicator augments your profile – your level rating
on each of the several hundred competency factors addressed
by the program.

It is necessary for the SSD community to expand rapidly –
as the value of the education becomes widely known, the
demand for members of the community will increase rapidly.
These are the same forces that give rise to the prevalence of
poseurs – self-proclaimed experts in any new technology or
methodology. The kind of rapid expansion necessary comes
from the ability to establish a large number of Studios around
the globe. Students will be exposed to a common curriculum,
common Studio practices, and will be required to physically
participate in work at Studios other than their local Studio.
(Approximately 1/3 of the time spent in the program will be at
a Studio other than the one in which the student initially
enrolls.) Studios will also be connected and project teams will
frequently (probably most of the time) involve participants
from multiple Studios across multiple time zones.

V. TECHNOLOGY SUPPORT OR DYNABOOK REDUX
The vision, strategic goals, and tactical objectives of the

SSD program requires substantial technical support. Bits and
pieces of the required support currently exist: e.g. laptop
computers, remote desktop software, and interactive television
(ITV).

While it is possible to amalgamate multiple technologies to
service the combined needs of the SSD program, it is not
necessarily desirable to do so. Issues of platform (chip set, OS,
browser, etc.) compatibility and interoperability remain serious
obstacles. The cost of licensing the plethora of technologies
needed to support the vision, goals, and objectives, in their
entirety, is daunting.

What seems to be needed, and what we are actively
engaged in creating, is an “SSD Tablet.” The inspiration of
this device is Alan Kay’s Dynabook.

As Kay described it, in 1968 – well before any of the
technology necessary to implement it was available or even
imagined – the Dynabook would be an interactive computing
device to support the education of children. The form factor
for the device was roughly that of a typical hardcover book.

Interactive lessons would be delivered via this book along
with the ability to access any information that the child might
need to enhance their learning and slake their innate curiosity.
The device would be “programmable” in the sense that the
child could “dialog” with the computer in order to change its
nature or extend its capabilities. Several years later these same
objectives shaped the Smalltalk programming language (and
current variants like Scratch).

The Star project at Xerox Palo Alto Research Center
(PARC) embodied many of the ideas of a Dynabook, except
for form factor (it was a desktop) and conversations between
child and computer were still mediated by keyboard and
mouse.

Today we are much closer to realizing the Dynabook
concept. When Steve Jobs showed Alan Kay the first iPhone,
Kay said that it was the first approximation of the Dynabook
worthy of criticism. (One criticism, the form factor was too
small. Kay suggested a form factor of a Moleskin notebook he
was carrying. A year or two later, the iPad.)

The ubiquity of wireless networking and the availability of
virtual resources (Cloud Computing) via those networks are
also critical infrastructure technologies that make it possible to
realize the Dynabook concept.

VI. SSD TABLET
We have decided to build a special purpose tablet

computer-based application that will support the SSD Program:
a tablet for mobility and for reasonable form factor; special
purpose to optimize the degree of support for the program.
Some initial expectations for the device include:

• Security and access control based on encrypted
communications and URL, embedded hardware id
codes, plus user biometrics – all unobtrusively and
periodically verified while the device is in use.

• Simplified intra-community asynchronous
communication and resource sharing (email and
document sharing analogs)

• Simplified intra-community synchronous
communication (e.g., chat, video conferencing,
VOIP.)

• Augmented collaborative work tools (e.g. shared
whiteboards, remote desktop, distributed modeling
tools).

• Delivery of multimedia educational content.
Content would be designed for form factor
compatibility.

• Support for software development including an
IDE and Bluetooth keyboard and mouse as well as
touch screen and voice recognition.

• Portfolio (student accomplishments) access.

• Assessment and reputation sharing.

• Contact lists, calendars, and other productivity
tools.

This basic functionality of the SSD Tablet is extended by
making it a component in a Studio ecology. Other components
would include multiple projectors (standard and pico) and
multiple cameras mediated by devices like AppleTV, WiFi and
Bluetooth. Each Studio becomes an Ambient computing
environment with control information coming from sensors
built into devices (e.g. accelerometer and gyro compass in an
iPhone) or camera captured gestures from participants in the
room and information captured from and displayed on any
surface (with intermediation by appropriate software as
desired). A simple gesture on a touch screen would cause the
contents of the tablet display to be projected on a wall and a
wave of the arm could send that information from one all to
another (and potentially to a wall in a Studio on the other side
of the world).

A final aspect of the SSD Tablet is inspired by Neal
Stephenson’s description of the “young lady’s primer,” in his
book Diamond Age. The primer was a Dynabook on
nanotechnology steroids. It served all of the purposes of a
Dynabook coupled with a sophisticated (far beyond current
capabilities) AI and equally sophisticated voice
recognition/generation tools (so it could read the young lady a
bedtime story), and connection to a network of behind the
scene human beings. The individuals in this network worked
from their homes or wherever they happened to be and could
monitor a specific primer, its environment, and its user.
Because they were human, they could recognize situations of
potential danger and cause the primer to initiate actions or alert
the young lady to take actions to ameliorate the situation. The
human “listener” could also detect moods, puzzlements, and
other aspects of the state of mind of the young lady and could
initiate conversations or otherwise interact with the young lady
in an appropriate manner. Someone in the network was
available to any young lady – via her primer – twenty-four /
seven.

Imagine how the community goals of the SSD program
would be enhanced if a similar kind of person-to-person
connectivity could be implemented in the SSD Tablet.

Another aspect of the tablet merits brief mention. If the
membership goals of the community are realized (thousands of
members and hundreds of Studios) and as the curricular
content grows to anticipated levels, there will be a need to
supplement access with the use of AI-type tools. Most notably
some kind of “intelligent search” capability, some basic
machine learning capabilities to facilitate workflow, and
features akin to code completion in program editors, only
focused on design models instead of code. The last feature
noted would also assure effective use of design libraries and
design patterns. We are aware of this AI type potential but
have yet to actively explore how it might by implemented and
utilized.

VII. CONCLUSION

Initially, the SSD Tablet will be a mash-up of independent
applications executing under the auspices of a browser or OS
defined platform. The longer term goal is to get even closer to
the Dynabook concept by providing a single environment that
serves platform, application, development and interaction
requirements, e.g.: a small firmware virtual machine interacting
directly with the hardware (no intervening operating system), a
single modularization model/metaphor (the object), a single
programming language, and a library of object components that
individually and collectively provided all application and IDE
functionality. The most obvious candidate for enabling this
goal is Smalltalk (actually one of the dialects of the one of the
current incarnations of Smalltalk – Squeak) – which reflects
many of the same ideas and values expressed for the
Dynabook.

REFERENCES

[1] http://www.mprove.de/diplom/gui/Kay72a.pdf
[2] JN. Stephenson, Diamond Age: A Young Lady’s Illustrated Primer, NY:

Spectra, 2000.
[3] T. Peters, Thriving on Chaos, NY: HarperCollins, 1991.
[4] K Beckand C. Andres, Extreme Programming Explained: Embrace

Change, second edition, NY: Addison Wesley, 2004.
[5] http://martinfowler.com/articles/writingPatterns.html.
[6] http://en.wikipedia.org/wiki/Software_design_pattern#Structure.
[7] M. Young, The Technical Writer's Handbook. Mill Valley, CA:

University Science, 1989.
[8] R. Gabriel, Writer’s Workshops & the Work of Making Things:

Patterns, Poetry, …, NY: Pearson, 2002.
[9]

