
Metaphors be with you!
(Metaphor System)

Dr. David West, Dion Stewart, Mathew Solano
Software Development Apprenticeship Program

New Mexico Highlands University

Abstract

One of the more unique aspects of XP compared to other agile methods was the
explicit promotion of metaphor to an “official” practice. Unique: and
immediately controversial. Few practitioners claimed to understand the point of
metaphor and, indeed, it is no longer a separate practice in XP. Some agile
proponents have noted general uses of metaphor in software development but
there is still a need for more systematic discussion of how metaphor informs
development. This paper will present one possible framework for such a
discussion.

Background

 Throughout this paper we will be using the term metaphor in a very loose fashion – as
an umbrella for everything from a true metaphor to simile to analogy to story.

“Along the philosophical fringes of science we may find reasons to question
basic conceptual structures and to grope for ways to refashion them. Old idioms
are bound to fail us here, and only metaphor can begin to limn the new order.”
[Quine79]

 Each new software development project occurs at a fringe of understanding because the
domain, the process, the problem to be addressed is, for the developers, initially,
unknown. Metaphor is a useful, if not essential, tool for enhancing understanding and
gaining knowledge.

 Care in the choice of metaphor is important. Once coined, metaphors have a semi-
independent lifecycle of their own.

“Metaphors can begin life as diaphors or epiphors and then change their status
through usage and testing. Diaphors can become epiphors as their hypothetical
suggestions find confirmation in experience or experiment. Epiphors become
ordinary language when they are used so often that they express what the
speakers now consider to become commonplace. When this occurs a new lexical
[term] enters the dictionary.” [MacCormac85]

 If the “hypothetical suggestions” of the metaphor are not confirmed the metaphor
should be discarded. (Or take up residence in the world of poetry.) Occasionally an
unconfirmed metaphor will continue to be used: either because it still has some
pedagogical use for novices (the Bohr “solar system” metaphor of atomic structure) or
because it is a kind of shorthand expression of a popular perspective – a paradigm in the

Kuhnian sense. When the latter circumstance prevails we can describe the phenomenon
with the term “paraphor” – synthesis of paradigm and metaphor.

 Metaphor is not just an explanatory device. There is strong evidence [MacCormac85,
Cowan79, Lakoff99?] that the use of metaphor actually shapes the content and essence of
the theory that employs them. In some very real ways – the metaphor you use (or fail to
use) while developing a new system play a significant role in the success or failure of that
system.

 In 2001, metaphor was an official practice in XP and, because of how it was discussed
came to be seen as singular in nature – the “system metaphor.”

“Metaphor – Guide all development with a simple shares story of how the whole
system works.

Each XP project is guided by a single overarching metaphor. … The words used
to identify technical entities should be consistently taken from the chosen
metaphor. … The metaphor in XP replaces much of what other people call
“architecture.” [Beck01]

 In 2005 almost all agile proponents would agree with Beck that:

“ … metaphors are important. The language you use shapes the way you
think which shapes how you program. Sharing metaphors does help a
team communicate with each other and their users. However Metaphor is
not an XP practice, any more than typing is a practice. Less, actually,
since typing is a consciously learned skill. You learn metaphors from the
moment that someone points to the picture in the board book and tries to
convince you it’s and airplane, maybe before. You know it isn’t an
airplane. You know they know it isn’t and airplane. You learn that you
use one thing to represent another. I don’t think anyone can think
abstractly without using metaphor. It can be very valuable to be aware of
the metaphors you are using, sometimes even choosing them consciously.
It is redundant to include metaphor as a practice, since you can’t help
having metaphors. That is why I removed it from the list of practices. It is
still worth thinking about and talking about.” [Beck05]

 We agree that metaphor is still worth thinking about and talking about, but we disagree
that there cannot be a practice of metaphor. The appropriate use of metaphor, in our
view, can be a consciously learned skill. We also believe that there is significant value in
being aware of, and choosing, the metaphors you use.

Default metaphors

 A significant majority of software developers, today, design and program under the
influence of a set of “default” metaphors. For most this is not a conscious choice, merely

a reflection of the way they have been educated and trained. Prominent among these
default metaphors:

 Machine – a classic example of a metaphor that evolved to become a lexical
term. Programming languages and operating systems are frequently discussed
as “virtual machines” in that they represent the hardware at a higher level of
abstraction. In languages like Smalltalk and Java the engine that allows
execution is also called a “virtual machine” albeit with nuanced definition.
Decomposition and design guided by this metaphor results in identification of
lots of hierarchically nested synchronous and concurrent machines along with
the control mechanisms to keep them interacting. Programming is
metaphorically equated to “telling the machine what to do next.”

 Organization Chart – centralized hierarchical control, especially as
embodied in the classic program structure chart with a topmost “master
control module;” afferent, efferent, and transform modules below; and data
and control signals passing among them. This metaphor is still embedded in
most programming language structures in the form of a main() containing
control flow logic calling subordinate functions.

Entity – a thing with characteristics the value of which must be remembered
by the computer (or database

Objects are people too!

