
Lean and Agile.
Marriage made in heaven, or oxymoron?

David West

Transcendence Corporation
College of Santa Fe
profwest@fastmail.fm

dwest@csf.edu

Yes, I am deliberately trying to provocative.
And yes, in a very specific way, I believe
the latter half of the question to be true.

This might be surprising since LeanAgile
has seemingly become one word in the
world of software development. So perhaps
some caveats are in order.

I have known Mary and Tom Poppendieck
for more than a decade. We were friends
and colleagues in the world’s largest object
user group – in Minneapolis. Tom was my
student at the University of St. Thomas (also
in Minnesota, not – very unfortunately in the
winter – in the Virgin Islands). Tom was
one of the technical reviewers of my book
on objects.

Except for the fact that their book outsold
mine a hundred to one (and for which I will
never forgive them), I have nothing but
respect and admiration for its contents and
its ideas. Their book is a masterful treatise
and its contents should be learned and
applied by software developers everywhere.
Including, maybe, agile developers.

So what’s the problem?

In a nutshell: Lean and Agile are grounded
in fundamentally different world-views and
therefore will inevitably find themselves in
opposition on critical points.

In the following paragraphs I will try to
show the opposing world-views, illustrate
one point of conflict, and then suggest how
the two viewpoints might be reconciled.

Lean Worldview = Production

Some quotes from Lean Software
Development, An Agile Toolkiti to introduce
my assertion that the Lean worldview is a
production worldview.

Jim Highsmith’s foreword, “… Mary and
Tom Poppendieck take lean industrial
practicesto a new level – they tell us how to
apply them to software development.” And,
“… provides a wealth of information about
applying lean techniques from an industrial
setting to software development.”

Some phrases from Ken Schwaber’s
foreword, “industrial process control,”
“agile processes,” “her [Mary’s]
background in manufacturing and product
development.”

From page xxii of the introduction, “While
recognizing the hazards of misapplied
metaphors, we believe that software
development is similar to product
development and that the software
development industry can learn much from
examining how changes in product
development approaches have brought
improvements to the product development
process.”

Production and process vocabulary and
metaphors are pervasive throughout the
entire book. Although there is a clear
rejection of 19th century ideas about
production (e.g. Taylorism) there is an
equally clear adoption of enlightened
production models (e.g. the Toyota
production model).

Specific agile practices are evaluated from
the perspective of contribution to
production. If a specific agile practice is
seen to be in conflict with the lean
production process model, that practice must
be modified or eliminated.

Lean is not entirely about process. For
example; of the seven principles of Lean,

- Eliminate waste
- Amplify learning
- Decide as late as possible
- Deliver as fast as possible
- Empower the team
- Build integrity in
- See the whole,

only the first is unequivocally connected to
process, to production.

These principles suggest a way to transcend
the production worldview evident in every
other aspect of Lean. We will return to this
possibility in the last part of this article.

Agile Worldview = Theory Building

I have had the great privilege to be
associated with, and count myself among the
friends of, most of the inventors and
advocates of Agility. I have discussed the
following idea about the philosophical
foundations of Agile and found them to be
in agreement. Only one, Alistair Cockburn,
has put the idea into print.

Appendix B, pages 227-239, of Cockburn’sii
Agile Software Development contains a
reprint of an article written by Peter Naur in
1985, titled “Programming as Theory
Buildingiii.”

Naur makes the argument that the act of
developing software has mistakenly been
taken as an act-of-production – production
of “a program and certain other texts.” He
cites several examples of empirical data
inconsistent with the production model of
development; including, the fact that
documentation of arbitrary completeness

and exactitude does little, if anything, to
convey an understanding of a program to
those not involved in its original creation.

Theory building, ala Naur, is the individual
and collective effort to:

- Understand the World
- Understand how the software is

shaped by the World and how it will
integrate with that World

- Understand the essence of the
software and how best to articulate
(code) that essence

- Understand if you have gotten the
first three understandings right.

The observable activities associated with
theory building include telling a lot of
stories, exploring ideas, trying things to see
if they work, testing your understanding,
populating your physical space with
evocative reminders of your understanding,
and doing these things iteratively in
increasingly comprehensive increments.

Looks a lot like an agile environment, but
bears little resemblance to a production
environment.

Except for citing Ryle’s ideas about the
possession of a theory, Naur does not
explicitly lay out a set of underlying
principles for theory building. If he had,
they almost certainly would have been
consistent with XP’s values of Simplicity,
Communication, Courage, and Feedback.

Worldviews in Conflict

Lean views software development as a
process for moving from conception to
product. It wants to optimize that process,
albeit in a radically different way and with
radically different values than traditional
(e.g. Taylorism) attempts at optimization.

Agile views software development as a
process for building a consensual theory of
the world: with an artifact being a byproduct
– an expression – of that theory.

Because the fundamental worldviews of the
two sides are dramatically different, it is
inevitable that there will be conflicts. These
conflicts will usually manifest themselves at
the level of tools and practices.

For example: the product backlog.

Agile is premised upon the idea of
modularizing work on the basis of user
storiesiv. A user story is, “one thing that the
customer wants the system to do.” (Kent
Beck)

User stories originate from the users, aka,
the customers or the business. Stories can
be produced far faster than they can be
implemented, especially at the beginning of
a large-scale project, or when the goal is to
“agilize” the entire enterprise.

Almost all agile projects establish a product
backlog, a set of stories to be implemented.
This set can be quite large. I have seen
projects with a product backlog of hundreds
of stories.

Lean looks at the product backlog and sees
‘inventory’ and ‘waste.’ Mary Poppendieck
is on record suggesting that the product
backlog should be eliminated or, at
minimum pared to a size more evenly
matched to the collective velocity of the
teams’.

Agile sees the product backlog as a snapshot
view of an emerging theory. Even if that
snapshot view is physically manifest as a
wall full of story cards, it is not an
inventory! The cards on the wall serve as a
form of external memory, with each card
evoking (recalling to mind) detailed
conversations and understandings of how
things work.

Agile works best when there is a huge
product backlog and when there is a large
amount of churn in the composition of that
backlog. Churn results from conversations
about story essence; story priority; feedback

from developers about stories not
understood; stories that turned out to be
easier or harder to develop than expected;
stories that had to be refactored to make
them more understandable or more tractable
to development; and feedback from user
acceptance of stories completed.

Eventually, churn diminishes and the
product backlog becomes stable. The
addition of new stories reduces to a trickle
and the prioritization of stories changes only
nominally. At this point it becomes even
more tempting to consider the product
backlog as an inventory.

Resist the temptation. The backlog is still a
physical manifestation of the theory. It
provides absolutely essential context for all
of the development work being done.

The backlog provides the same kind of
critical support for software development as
continuity editors and technical advisors to
for movie production. When attention is
focused on a single scene, it is easy to forget
that the hero was wearing a blue shirt, not a
red one, in the last frame of the preceding
scene. It is easy to forget that you can’t hear
an explosion in space. Similar errors occur
when working on story implementation and
it is the context – the product backlog – that
provides continuity and correction of
misunderstandings of essence.

In all of the agile projects I have coached, I
insisted on having the product backlog on
the wall in the form of story cards adjacent
to the sprint tracking information. Daily
stand-ups were conducted within easy view
of both the stories of immediate focus and
the product backlog stories. The product
backlog was reviewed and discussed in
detail during every planning game and every
retrospective – simply to refresh the minds
of everyone involved with the state of our
collective theory.

The point of this example: your worldview
necessarily colors your interpretation of
“things.” A simple artifact, like a product

backlog, has very different realities,
purposes, values, and functionality based on
your worldview perspective. In this case the
‘production worldview’ results in an
interpretation that is actually harmful to
agile software development.

I realize I am making a very general
argument and offering a single example to
support that argument. This is an artifact of
space limitations, not a lack of examples.

Reconciliation

Marriage is bliss – except for the
misunderstandings, arguments, and
conflicting goals. Lean and Agile make
such a beautiful couple. Surely this
marriage can be saved?

Of course it can but there are three
prerequisites, one for Lean, one for Agile
and one for both.

Lean needs to take off the “production
glasses” and look at Agile and elements of
the agile development process from a
holistic perspective that includes all seven of
the Lean principles. If the product backlog
had been evaluated from more than the
‘eliminate waste’ principle, its contributions
to “amplify learning, decide as late as
possible, empower the team, build integrity
in, and see the whole” would be obvious.

Agile practitioners must, somewhat
ironically, to the exact same thing. When
you listen to agile practitioners talk about
what they do – their vocabulary, metaphors,
and implementation of the practices reflect
the perspective of agile as an alternative
mode of production. Ask most agile folk
about Naur and theory building and you will
get a blank look.

Both Lean and Agile must stop applying, in
a literal and rote manner, the tools and
practices. Tools and practices are nothing
more than expressions of values, principles
and philosophy. They are not the only
possible expressions and may not even be

the best expressions. Neither side will be
able to realize their respective founders’
admonition to “use, adapt, and transcend”
until and unless they come to understand
why the practices and tools are what they
are.

AgiLean (think tabloids and bennifer or
brangelina) was a case of love at first sight.
The honeymoon was an exhilarating interval
of finding new ways to merge ideas. But
that time is past. If this marriage is to
survive, both parties need to get past the
superficial attractions – because at that level
conflicts will inevitably arise.

i Poppendieck, Mary and Tom. Lean Software
Development, an Agile Toolkit. Addison-
Wesley. 2003.
ii Cockburn, Alistair. Agile Software
Development. Addison-Wesley. 2002.

iii Naur, Peter. “Programming as Theory
Building,” in Computing: A Human Activity.
ACM Press. 1992.

iv The essence of a user story is the terse
sentence or two on a 3x5 card – but the
expression of a story, even in agile, can be a
complicated use case or an elaborated and
annotated story card, ala Cockburn.

