
Five Reasons to Fire your IT Department
(Or not hire agile developers)

Dr. David West

School of Business – New Mexico Highlands University
Department of Computer Science – University of New Mexico

Abstract: Agility is an old topic in the world of business. One of the major
impediments facing an organization striving to be agile is information technology.
It might appear that the burgeoning Agile Development movement is good news for
the corporate world but only if those in that movement recognize and address with
greater clarity and emphasis the ways that traditional development has failed. This
paper outlines five factors that make IT a barrier rather than a resource. CEOs
and managers should be asking agile developers how they intend to address these
issues before making any adoption decisions.

 Background

The world of business has been talking about agility for at least two decades. Popular
and widely read (at least widely sold) works by Eric Toffler, Tom Peters, and many
others argued vociferously for the position that business success was dependent on the
ability to be agile, on rapid change, adaptation, and evolution – to “thrive on chaos.”

Computers and information technology were thought to be the means whereby an
organization could realize the goal of business agility. Alas, those hopes appeared to
have been misplaced. Despite billions (over $500 Billion annually by 1996) of dollars
spent on IT, few organizations are any more agile today than they were twenty years ago.
Perhaps this should not be much of a surprise, given the almost unchanging (since
declaration of the “software crisis” in 1968) statistics on the number of IT projects
abandoned, over budget, late, and generating marginally useful results. (Or the oft
debated lack of productivity gains documented by Robert Solow in the 1990s.)

It is not the case that IT has not tried to improve its track record. Apparent investments
in new ideas (objects), new methods (Software Engineering), new concerns (quality and
Total Quality Management), and new tools (UML, Java) are clearly evident. Today
business managers are confronting the need to make decisions about another software
development innovation – agile development. Is there any reason to expect that any of
the various flavors of agile development will, in fact, deliver the means for an
organization to achieve its own agility goals?

A possible answer to that question can be derived by examining five factors that have
contributed to the failure of traditional software development to achieve its stated
objectives. These five factors derive from ideas (assumptions and values) – they are not
specific, easy to change, techniques or technologies. The business manager’s evaluation

of the potential for success offered by agile development should be based on an analysis
of how various agile methodologists and developers recognize and avoid the traps
implicit in these five philosophical areas.

Thinking like a computer

Talking about the way he was taught to program, David Parnas recalls: (paraphrased)
‘Think like a computer,’ he said. ‘Begin by thinking about what the computer must do
first and write that down, then think about what the computer has to do next and continue
in that way until you have described the last thing the computer must do.’ This remains
the way that almost all programmers and developers are taught to code and to design
systems – think like a computer. Unfortunately, it does not work – at least it does not
lead to the construction of software that can support organizational agility.

A consequence of developers thinking like computers is a communication gap between
them and users. This gap is apparent and is wide. Immense amounts of effort – mostly
misdirected – has been expended trying to bridge that gap with formal requirements
definitions and highly legalized contractual relationships that help affix blame for
miscommunication but do nothing to prevent it in the first place.

At first glance, it appears that agile methods have addressed this potential communication
gap. Extreme Programming, for example, requires an “on-site customer” to assure
continuous dialog as a system is being developed. But physical proximity and
willingness to talk will not eliminate the communication gap – which is based on one
party “thinking like a business” and the other “thinking like a computer.”

A common way of thinking needs to be adopted. Since, as Parnas noted 20 years ago,
thinking like a computer does not even help one become a better programmer, it is time
for developers to abandon that unfruitful approach and adopt something more natural,
something more consistent with the user’s way of thinking. Eric Evans in one of the
more recent voices advocating this type of thinking about development and design.

Even more fundamental are the metaphors and ideas that guide the division of the world
into parts, parts that are easier to understand and interact with than the whole, parts that
are composable, so that the same parts can be combined in different ways to solve
different problems. The human “parts” that the businessperson works with every day
have exactly this kind of composability.

The idea of an “object” as a unit of decomposition is precisely the kind of metaphor and
idea required. But the objects must be defined consistent with “natural occurring
disjunctions in the problem space” and not artificially defined disjunctions in the solution
(computer thinking) space. Alan Kay, Kent Beck and Ward Cunningham, Rebecca
Wirfs-Brock and others first articulated this kind of object idea. Dave West argues for its
adoption in his book on object thinking.

Query your IT staff (and any agile practitioners you are thinking of hiring) and see what
their conception of an object is. If they describe it in a way that you can understand, in a
way that is reminiscent of an object-as-person metaphor then there is some hope. Odds
are both groups will tend to answer you in terms of one of the two bedrock ideas of
thinking like a computer: algorithms (telling the computer what to do) or data structures
(what the computer is to do it to).

Agility does not, in and of itself, offer any assurances about how people think about the
problem of constructing software. Agile developers can be just as guilty of thinking like a
computer as the most traditional of practitioners.

Artifact Construction

Software developers, especially those most closely associated with the ideas of structured
development and software engineering, have focused their attention almost exclusively
on the construction of artifacts. Lip service is paid to the notion of context – of a system
of interaction among human beings and other hardware and software artifacts – but the
main focus of concern and interest is defining a “thing to be constructed” as thoroughly
and unambiguously as possible and then “building to definition.” If the product “meets
specs” it is a success – it is not the developer’s problem if it is unused because it makes
people unhappy or disrupts the socio-political balance of forces in the office.

The delivery of new software to an organization is highly reminiscent of the tragic-
comedic events depicted in a movie, The Gods Must be Crazy, released several years ago.
In the movie, a Coke bottle (an artifact) was dropped from a plane and discovered by a
small group of !Kung bushmen. It was found by some to be useful, by others to be
harmful. It disrupted family relationships and lines of authority. Things got so bad that a
consensus decision was made to remove the bottle to a place where it could never be
recovered.

Christiane Floyd and her colleagues, Bonnie Nardi and Vicki O’Day, and many others
have pointed out the need to “socialize” our software. Floyd and her colleagues use the
notion of software development as reality construction – creating a new physical, social,
and even cognitive environment in which people have to live – with the introduction or
modification of each new software artifact. Nardi and O’Day offer insights on the social
structure and human roles that need to be established if any new technological artifact is
to be successfully deployed in an existing complex, human inhabited, system.

Agile development has adopted the necessary foundations for a development process that
is not centered on the construction of an artifact. Incremental iterative development with
lots of feedback is a prerequisite. But again, it is not sufficient. Artifact centrism can be
just as evident – one story card at a time – in agile development as it has been in
traditional development.

Ask your IT staff (and any agile practitioners you are thinking of hiring) to describe for
you the “affordances” of the software they are creating. If you get blank looks arrange

for a remedial course in Hiedeggerian philosophy. If you get an informed discussion of
how people perceive and interact with the tools they use, with the occasional mention of
Floyd, Pelle Ehn, Kristen Nygaard or the “Scandinavian School” of software design; you
have a potentially great development team.

Formal Methods

The terms ‘art’ and ‘craft’ were banished from the world of software development
decades ago. Instead, software was to be developed in a “scientific,” “mathematical,”
“logical,” and “engineering fashion. Even the process by which software development
activities was managed was to be scientific and rational.

The agile literature is full of arguments against the formal mindset. Interestingly enough,
so to is the literature of traditional software development. Leading traditionalists like
David Parnas and Fred Brooks pointed out decades ago that method, process, and tools
are far less important than people and people do not work according to formal methods.
Robert Glass discusses this issue at length in his numerous books and columns.

But formalism is not a characteristic unique to software development. Western culture in
general has been besotted with formalism since the “Age of Enlightenment”. Rational is
good, irrational is bad. Formal is necessary, informal is inadequate. Anything not science
is superstition. Anything, including agile practices and methods, that comes into
existence in this cultural context cannot help but be contaminated by the prevailing ethos.

It is astounding that so much effort – by the agile community itself – is being expended
on efforts to formalize agility. From discussion about the need to test a particular kind of
code, to debates about whether you can omit or add a practice and still be XP, to concerns
about certification – too many people are attempting to remove all ambiguities and
reduce agility to a predictable and, yes, formal way to develop software.

The test for your IT staff (and prospective agile staff) this time is to define what Kent
Beck meant when he suggested that XP had three phases – “out-of-the-box, adaptation,
and transcendence.” At minimum you should get a response using an analogy like
playing chess – by the book, a move at a time; using patterns adapted to current
circumstances, and internalized gestalt awareness of the right move to make at each
juncture of the game. An even better response would be based on how self discipline and
internalization of the values, principles, and practices of XP create a mindset reminiscent
of satori (enlightenment) that allows a deep understanding of each situation and
recognition of the correct action in each instance.

Centralization and Control

Business has a love-hate relationship with the concepts of centralization and control.
Software developers, it seems, have an unbridled lust for both.

Even though many alternatives are known, the typical business organization is organized
according to a hierarchical control structure. It is also typical to see companies
establishing “headquarters” where all employees can be centralized and better managed
(controlled). At the same time, most successful business recognize that the need to
escape the confines imposed by centralized control – especially when the business goals
involve adaptation and innovation – agility.

Software developer’s love of centralization and control is evident in the push for
“integrated” applications, monolithic systems promoted by companies like SAP, and
most prominently in the reverence shown for relational database systems. Even at the
level of code, look for class names that include the word “manager” or “controller” or the
extensive use of case statements and similar control structures.

There was a time, perhaps, when centralization and control were necessary for software –
fifty years ago when computers where massive, slow and expensive. Today, the world of
the Web and portable wireless platforms offers a powerful argument against both
centralization and control. The coming world of ubiquitous computing will make this
argument even more compelling.

The ends to which centralization and control are directed can be better achieved by
communication and coordination. The most powerful of all the values and practices
incorporated in agile methods are those directed towards communication. A shared
vision (metaphor), a shared language, and constant use of both are more than adequate
substitutes for centralization. (As long as you remember that human communication is
dependent on the occasional exchange of pheromones – requiring close physical
proximity - as it is on incessant email.)

Coordination can be effected by distributing “control” responsibilities across a
community of participants instead of centralizing into a single controller. A traffic
signal, for example, coordinates but does not control the flow of automobiles through an
intersection. The traffic signal controls itself – changing states in an appropriate manner
– and the automobiles (drivers) control themselves in response to broadcast
communication by the traffic signal of its state.

If your IT staff (or prospective agile team) compromise or inhibit (like the all to common
practice of forbidding one part of the IT group from communicating with others,
including users and managers) the flow of communication then send them to the
boardroom where Donald Trump can fire them. You can also ask a technical question –
what pattern do you use most often in your code. If you get any other response than “the
observer pattern (also known as “publish and subscribe”) then be suspicious, they are
probably still too enamored of hierarchical control.

Scale

Humans do have a fascination with big things. Businesses do strive for continual growth.
Bigger is, if not better, often necessary. A coordinated and standardized air traffic

control system (and accompanying software) is a big task – one that is desirable to
undertake. Problems with bigness arise because we not only desire it in many ways, we
are also afraid of it. Bigger things are harder to understand and we are afraid mere mortal
humans will fail in the attempt. We are also afraid because we do not understand how
things get to be big – or at least how they can get big and still work instead of collapsing
as a consequence of their bigness. Uncontrolled growth is described as “cancerous.”

Software developers frequently confront issues of scale. A harsh criticism of a solution
to a software problem is the comment, “but it doesn’t scale.” The larger the system under
development the more pressure there is to adopt extremely formal and bureaucratic
techniques and management strictures in order to assure success. Agile methods, and
especially the highly prominent variant extreme programming, are attacked and
dismissed because they “can’t scale.”

It is fear not evidence that supports the claim that agile methods do not scale.

There is no formal process for growing a business, why should there be one for
“growing” the software it requires? Businesses grow by taking on one challenge at a
time, by hiring one person at a time. To grow successfully an organization needs a vision
– a mission statement in prosaic terms – and a set of values to guide that growth. It does
not need a “plan,” “architecture,” “process,” or “maturity level.” (At most, the vision and
values are augmented by the existence of an espalier (to use a term advanced by David
Gelernter) – a “training form” of the sort used to encourage the growth of roses to fill a
space.)

Software is written one line at a time by a single pair of programmers. Whatever the
scale of a project its creation requires small teams working independently and constantly
communicating. All large-scale software is created “organically” in a manner consonant
with agile values and practices.

What does not scale is the ability to pre-plan, pre-design, and mechanically execute those
plans and designs. Businesses do not have “hive minds” of the sort popularized in
science fiction, directing the growth of the company nor does a large software
development team.

Successful business growth is an emergent phenomenon – the eventual outcome is
unpredictable from perfect knowledge the operative, and local, techniques, constraints,
and initial conditions. The outcome is always a bit of a surprise. If we use business
reality as an analogy for software it means our software systems will also emerge and
their final form will be a bit of a surprise.

But the goal of software is to support and augment the natural abilities of the humans
using that software in the environment they occupy. The goal of development should be
continual parallel evolution – not the construction of some pre-conceived artifact. This is
especially true for large scale systems supported large organizations and socio-political
communities.

Agile methods provide the foundation for precisely this kind of parallel evolution of
software and organization. Both client (user, organization, society) and server (software)
co-evolve in an incremental and iterative fashion.

The final question for your IT staff (and prospective agile team) involves the value of
courage. Do they have the courage to “walk the talk?” Evolvability, adaptability – the
ability to respond to change – are espoused values for software engineering as well as for
agile methods. Does your staff (your prospective agile team) truly embrace change?

Conclusion

Agility is a goal (a requirement really) for both business and software development.
Traditional approaches to software have failed to deliver on their promises – especially
those involved evolution, adaptation, and close support of business requirements. Agile
methods are the most recent expression of approaches known to deliver the promises
made but not delivered by traditional methods.

There is no guarantee that agile methods, however fervently advocated or practiced, will
have a long-term track record better than traditional approaches. At least five reasons for
questioning the ability of agile methods to deliver have been presented in this paper.
Each reason is based on a criticism of traditional development attitudes and values –
attitudes and values that can corrupt agile development just as effectively as any other
type.

Two challenges conclude this paper. The first, to the agile community: consider and
respond to the concerns raised above, and articulate how agile values, principles and
practices can assure a different outcome this time around. The second to the business
community: reflect on the essence of business and how that essence is or is not
consistent with your relationship with your IT organization. If you find it wanting –
probably for one or more of the aspects of development discussed in this paper – take
action to realize the agility you claim to strive for in both your business and your means
of IT support.

References

Dittrich, Yvonne, Christiane Floyd, and Ralf Klischewski (eds). Social Thinking –
Software Practice. MIT Press. 2002.

Evans, Eric. Domain Driven Design: Tackling the Complexity in the Heart of Software.
New York: Addison-Wesley. 2003.

Floyd, C., H. Zullighoven, R. Budde and R. Keil-Slawik. Software Development and
Reality Construction. Springer Verlag. 1992.

Glass, Robert. L. Facts and Fallacies of Software Development. Addison-Wesley. 2003.

Parnas, David Lorge. “Software Aspects of Strategic Defense Systems.” American
Scientist 73 (1985) PP. 432-440.

West, David. Object Thinking. Redmond, WA: Microsoft Press. Microsoft Professional.
2004.

