
OOPSLA, Liminality, and Deep Theory 
 

Dave West 
University of New Mexico 

 
 
 
The OOPSLA 2005 San Diego poster hangs on my door just as other posters have hung the past 
20 years.  I have missed only three of these annual gatherings and feel I have some perspective on 
the flow and ebb of this conference. 
 
There has been a fair amount of discussion the past couple of years about OOPSLA’s decline.  
Not in quality but in terms of interest and even, perhaps, relevance. 
 
Eyes focused on poster – murmurings of OOPSLA criticism as mental background hum – perhaps 
it is inevitable to ask, “Why do I plan to attend this year?”  Or more generally, why would anyone 
want to attend?  Or more generally yet, why does or should OOPSLA exist? 
 
A Big Idea Conference 
 
Academic and professional conferences are generally viewed as dissemination vehicles – places 
to present new work and generally update a community of interest on some area of common 
interest.  Networking, job hunting, and sales are important adjuncts to most conferences but are 
not the primary reason for their existence. 
 
Every once in a while a different kind of conference comes into existence – a big idea conference.  
A small group of people believe they have gained a novel insight or synthesized a big new idea 
and they create a conference for the purpose of exploring that idea and inviting others to share in 
the excitement. 
 
Big idea conferences have a higher than normal level of energy and an atmosphere that is unique.  
Metaphors saturate the conversational airspace.  Grand visions and freshman-dorm-room 
profound conversations fill every waking hour.  The camaraderie is palpable.  A clear distinction 
between “us” (those that “get” the big idea and are excited by it) and “them” (the prosaic masses 
that haven’t a clue what we are talking about) is clearly evident. 
 
Almost everyone is at the juncture of Alan Kay’s “pink and blue planes” and completely engaged 
in limning new vistas and marking trails into virgin territories. 
 
OOPSLA was such a conference.  Others in recent history include the first few years of 
AAAI/IJCAI (artificial intelligence), Sigraph (the virtual reality years), IJCNN (neural networks), 
XP/Agile Universe and Agile Development. 
 
Anyone lucky enough to attend the big idea years of a conference like OOPSLA are bound to be 
disappointed in later years because, it seems, that big idea conferences have a very short half-life.  
They rapidly devolve into pretty staid and traditional academic conferences.  The butterfly 
morphs to a wooly cocoon. 
 
A desire to become respectable – meaning the boss will pay for the trip and I will get tenure for 
presenting a paper – is the primary force prompting this devolution.  The number of attendees is 



also a measure of respectability and big idea conferences are forced into becoming “big tent” 
conferences – allowing participation of a lot of people whose understanding of and commitment 
to the big idea is peripheral at best. 
 
Is devolution inevitable?  What other evolutionary path might a big idea conference follow?  
There is a possible alternative but to see it requires exploration of a different problem. 
 
Background 
 
Peter Naur, in 1985, challenged the prevailing view of software development as an activity of 
“production.”  Then, and now, the dominating metaphors employed when discussing software 
development were mechanistic.  Methods (a set of work rules stating sequences of actions to be 
taken and deliverables produced) and processes (methods with metrics) were, and are, touted as 
the means to make software development more reliable and manageable. 
 
Instead of production, Naur proposed “theory building:” 
 

“Programming properly should be regarded as an activity by which the 
programmers form or achieve a certain kind of insight, a theory, of the matters at 
hand …  
 
… theory is understood as the knowledge a person must have in order not only to 
do certain things intelligently but also to explain them, to answer queries about 
them, to argue about them, and so forth. 
 
What has to be built by the programmer is a theory of how certain affairs of the 
world will be handled by, or supported by, a computer program.” 

 
A theory is not a model – a model is but an abstraction of one aspect of a theory.  A theory is a 
rich gestalt understanding of the real world (problem space), an intimate understanding of the 
program (solution space) and the relationships between them.  A theory integrates problem and 
solution as a single whole – reminiscent of Alexander’s view of design as an integration of 
problem and solution.  A theory is dynamic and so the things built according to theory are equally 
dynamic. 
 
A theory is ineffable – it exists inside of human minds and can be shared but it cannot be 
expressed and therefore cannot be communicated. 
 

“A main claim of the Theory Building View of programming is that an essential 
part of any program, the theory of it, is something that could not conceivable be 
expressed, but is inextricably bound to human beings. … the building of a 
program is the same as the building of the theory of it by and in the team of 
programmers. … The death of a program happens when programmer team 
possessing its theory is dissolved.” 

 
Echoes of Naur’s idea can be found in the work of Nygaard, Ehn, Alexander, and contemporary 
postmodern theorists like Floyd and Coyne.  The theory building viewpoint leads to some 
interesting consequences: 

• The only people that can possible possess a theory are those that worked together and 
simultaneously created theory and artifact (program). 



• Theories are “idiosyncratic” – apply only to the integrated problem and solution space 
defined by the scope of the program. 

• A theory cannot be communicated as it is ineffable and is not captured in any form of 
documentation.  At best documentation can provide a starting point for re-creation of a 
new theory in the heads of a new team. 

• Method does not help.  (Software methods should be “scientific” but this presupposes, 
“…that there is such a thing as scientific method and that it is helpful to scientists.”  Naur 
agrees with Feyerabend and Medawar, “that the notion of a scientific method as a set of 
guidelines for the practicing scientist is mistaken.”) 

• There are no shortcuts – a new team will take just as long to re-create a theory - create a 
new theory - as did the original team. 

• Programmers are not interchangeable parts because replacement programmers will not 
and cannot possess the necessary theory.  Corollary, programmers with theory should be 
respected and valued. 

• If you want to keep a program around and adapt that program to changing circumstances 
you need to keep the original team intact and working on the program.  (A rather 
depressing thought for programmers constantly looking for new challenges – and jobs.) 

 
The mechanics of theory building are not discussed in Naur’s paper. Had they been it is likely 
that they would conform to what we currently call agile practices: e.g. “One Team,” pair 
programming, collective code ownership, metaphor, iterative-incremental development, open 
workspace, intense and constant communication, short cycle feedback, test driven design, and 
even emergent architecture. All of these practices accelerate the acquisition of theory by a 
development team. 
 
Agile practices would seem to be a necessary prerequisite to successful theory building.  (Such 
practices have long been recognized by cultural anthropologists as fundamental to the 
establishment of culture – a people’s attempt to make sense of the world around them.)  But they 
are not sufficient.  Even a cursory examination of agile teams show that some establish a theory 
(and a social organization) that promotes project success and others do not.  Some teams “gel,” 
others do not. 
 
What mysterious X-factor might account for this observed phenomenon?  One place to look for 
the X-factor is the threshold that separates a mixed group of individuals assembled on one side 
and the gelled team on the other. 
 
Field Trip I – Rites of Passage 
 
A threshold, literally, is the sill of a doorway.  Metaphorically it is the point separating one world 
(public/outside) from another (private/inside).  Thresholds can be traversed but only if the 
individual crossing is willing to undergo a transformation, a redefinition of role and of social 
relationships.  (A traversal without transformation is an invasion.) 
 
Thresholds are implicit at the beginning of any new project.  Individuals are assembled and 
charged with a task.  To succeed they must cross a threshold – make a transition – and become a 
team with a theory. 
 
These kinds of transitions are very common in human cultures.  All human cultures acknowledge 
some, but not always the same, set of transitions.  Anthropologists study and theorize about these 
transitions.  The general public is most likely to recognize Arnold von Gennep, who coined the 



phrase “rites of passage,” although Victor Turner and Mary Douglas have made major 
contributions to our understanding. 
 
A transition, according to von Gennep, has three phases: separation, liminal, and incorporation.  
During the separation phase one’s old identity, roles, and social relationships are stripped away.  
Incorporation does the exact opposite – bestowing and confirming a new identity, new roles, and 
new social relationships. 
 
Liminality, to use Turner’s phrase, is the period of “betwixt and between.”  A liminal being is 
neither this nor that.  Liminality is pure potential (you are nothing and can become anything) and 
pure hazard (without proper guidance you may become the “wrong” thing). 
 
Human cultures have developed rites, observed, recorded and analyzed by anthropologists: the 
ritual actions, individual and group activities, symbols, and expressed ideals and values that are 
required to effect a successful transition.  Depending on the culture these are elaborate and 
extensive or barely noticeable.  (Compare the elaborate, frequently excruciatingly painful, and 
prolonged rituals that mark a transition to adulthood in many “primitive” societies with the ad 
hoc, essentially non-existent, 21st birthday celebrations in the United States.) 
 
Field Trip II – Deep Theory 
 
Let us leave the specialized realm of software development for a moment to examine a more 
general, but similar, problem – patterned human behavior – “culture.” 
 
Survival, simple day-to-day living, requires the constant matching of solution (behavior = run) to 
problem (tiger!).  Sometimes choices must be made among available alternative behaviors (run, 
climb), sometimes a behavior must be modified slightly (run, faster than you), and other times 
entirely new behaviors must be conceived (hey, there’s a long pointed stick, how can I use it?). 
 
Different groups of people exhibit statistically similar behaviors in response to encountered 
problems.  Behind this common behavior is a shared “theory” of the world integrated with a 
shared theory of proper human behavior.  Anthropologists call this shared theory “culture.” 
 
Culture shares many properties with the idea of theory proposed by Naur.  Both are idiosyncratic 
– different groups, different cultures.  Both are ineffable – can you articulate every aspect of your 
culture?  Neither can be documented or communicated, both must be generated via shared 
experience. 
 
Clifford Geertz and Marvin Harris (based on very different motivations) have demonstrated the 
impossibility of “documenting” culture or reducing it to a set of rules.  Harris makes the same 
argument as Naur (citing Ryle) that culture cannot be reduced to a set of rules, “if the exercise of 
intelligence (read culture) depended on the following of rules there would have to be rules about 
following rules, and about how to follow rules about following rules, etc. in an infinite regress 
which is absurd.” 
 
Geertz argues that the best one can do when faced with the problem of explicating culture is to 
provide a “thick description” – densely layered stories with lots of context and numerous 
revelatory asides that allow the reader to “experience” for herself the culture being described.  A 
“good” ethnography has more in common with a good novel than it does with a “scientific” 
descriptive report with all kinds of charts, graphs, and statistical analyses. 
 



A significant difference between culture and Naur’s idea of theory – cultures can be and are 
nested.  Almost all individuals simultaneously participate in many different cultures.  For 
example:  mystic, biker (only Harley riders allowed), object thinker, Xgilista (agile developer 
with a propensity for extreme programming), software developer, professor, New Mexican, 
Anglo-American. 
 
As an object thinker, I share an idiosyncratic theory of programming that is quite different from 
that of procedural thinkers, or data thinkers.  However, should I wish to share the theory of one of 
those other cultures, my efforts would be facilitated by the fact that we all share a common 
nesting culture – software developer. 
 
The basically pessimistic consequences of Naur’s theory building viewpoint could be alleviated 
(greatly alleviated in some cases) if idiosyncratic theories could be nested within more general 
“deep theory.”  But where might such a deep theory be found? 
 
Off The Deep End 
 
At least three foundations must be established if the profession is to establish a deep theory 
capable of providing a context for the various idiosyncratic theories that arise in each software 
development project. 
 

• Shared values 
• Richer metaphor 
• Experience 

 
Shared values will probably be the most difficult.  We might start with the XP values: 
Communication, Simplicity, Feedback, Courage, and Respect.  Or the values expressed by the 
Agile Alliance.  It would not be long however, before someone suggested that “scientific” needed 
to be included, or that simplicity should be augmented with efficiency or performance. To keep 
discussion under any semblance of control some kind of ground rules (try it, if it helps keep it, if 
it doesn’t toss it) need to be established. 
 
Metaphor is, in some ways, an easier issue.  A theory might be thought of as a way of thinking 
about the unknown.  In general, (according to Lakoff, always), humans confront the unknown via 
metaphor. 
 

“Along the philosophical fringes of science we may find reasons to question 
basic conceptual structures and to grope for ways to refashion them.  Old idioms 
are bound to fail us here, and only metaphor can begin to limn the new order.”  
[Quine79] 

 
A significant majority of software developers design and program under the influence of a set of 
“default” metaphors.  Prominent among these default metaphors: 
 

 Machine – hardware “machines,” abstractions of hardware systems and languages 
as “virtual machines” 
   Organization Chart – centralized hierarchical control. 
   Entity – a thing with characteristics the value of which must be remembered by the 
computer (or database). 



   Dualism – separation of software into two fundamentally different kinds of thing – 
e.g. (active) algorithms plus (passive) data structures.” 

 
In some cases these metaphors have proven to be constructive and helpful, but as applications 
move farther from the computer and seek to model, simulate, and/or interact with the real world, 
the less helpful these metaphors have proven to be.  They must be supplemented with or replaced 
by other metaphors, e.g. the Lisp “list” and the “behavioral object.” 
 
A person skilled in the use of metaphor should be able to discover new metaphors and make 
decisions about which metaphor is most likely to yield solutions to specific problems. What 
techniques might improve our metaphorical skills? 
 

Reflection – before all else make yourself aware of how you already use metaphors 
in almost every aspect of system development. 
Experiment – just stop and challenge yourself to find two or more answers to the 
question, “my system is like a ________”. 
Expand your horizons – nothing will prove to be more fruitful for developing your 
metaphorical sense than exploring domains other than software development and 
computer science.  Aspire to be a polymath. 
Tell stories from different points of view – A story is a kind of metaphor.  Imagine 
a brewery, a large room with vats of beer on one side a complex maze of conveyer 
belts, filling stations, capping stations, packaging stations, and shipping stations.  
Above the fray a master control panel that reflects the state of the brewery and 
which can be used to modify operations as necessary. Tell the story, “a day in the 
life of the brewery,” first from the point of view of the control panel (typical top 
down functional decomposition) and then from the point of view of the beer - 
desperate to escape the confining vat and effervesce on the tongue of some thirsty 
drinker, the beer uses all the apparatus in the brewery, including the control panel, 
to provide services that enables the beer to achieve its goal. 

 
Experience – “doing the relevant things under suitable supervision and guidance.” Deliver 
software.  Grow it in the company of others.  Shape it in a manner consistent with common 
values and employ the richest set of metaphors available – do it!  Subvert and invert the 
educational system in such a way that the traditional components of a curriculum are 
modularized and delivered just-in-time within a context of need and of expression.  Do it 
again! 
 
Conclusion 
 
Naur identified a very real and still omnipresent problem confronting software development – a 
mischaracterization as an activity of production.  Software development is theory building.  
Recognition of this fact presents its own set of problems – theory is ineffable, idiosyncratic, and 
not served by method.  The pessimistic consequences of a theory building view of software 
development might be overcome or alleviated if nested within a common culture – a deep theory.  
Establishment of a shared deep theory will require a very different approach to enculturation:  1) 
the use of agile practices to accelerate the establishment of idiosyncratic theories; 2) acceptance 
of a set of core values; 3) an expanded practice of conscious selection of metaphor; and, 4) 
experience driven education and enculturation. 


