

 Object Thinking

(For Extreme Programmers and Agile Developers)

 Dr. David M. West
 2003

Object Thinking, David West Preface

Microsoft Press CONFIDENTIAL 10/16/2016 9:24 AM Page 2 of 16

Preface

Extreme Programming (XP) and the various Agile Methods (Agile) focus on the practice of

software development. XP and Agile are most often discussed as if they were methods but it

would be more appropriate to speak of them in terms of attitude, behaviors and culture.1 To the

extent that XP and Agile are methods, they are methods for producing better developers – in

direct contrast to our normal understanding of method as ways for developers to make better

products.

What makes a better developer? Why do we need better developers?

The Need for Better Developers

I’ll answer the second question first. Traditional methods (focused on helping developers

make better products) and traditional process improvement programs (CMM, RUP) implicitly

Object Thinking, David West Preface

Microsoft Press CONFIDENTIAL 10/16/2016 9:24 AM Page 3 of 16

promise superior outcomes using ‘average’ human resources. For forty years the software

industry has attempted to apply, at least implicitly and often explicitly, the principles of

Taylorism (“scientific management”) to software development. For the most part, these efforts

have failed miserably.

There are instances of success of course. Project ‘A’ using method ‘X’ did, in fact, achieve

notable success, but - industry statistics as a whole have failed to improve much since 1968 when

‘software engineering’ and ‘scientific management’ were introduced as means for resolving the

‘software crisis.’ Abandoned projects, cost/time overruns, and bloated buggy software still

dominate the landscape.

Even the most ardent advocates (e.g. Dykstra and Parnas) of software engineering as well as

those (Yourdon and Martin) most responsible for popularizing software engineering among the

corporate masses recognized the limits of formal approaches. Parnas wrote, “A Rational Design

Process: How and Why to Fake It,”2 that acknowledged the fact that highly skilled developers

did not “do” development the way that so-called rational methods suggested they should. Martin

suggested that the best way to obtain high quality software, that met real business needs, on-time

and within budget was the use of special “SWAT” teams comprised of highly skilled, and greatly

rewarded, developers doing their work with minimal managerial intervention.

The only consistently reliable approach to software development is, “good people.” So why

has so much attention and effort been devoted to process and method? There are at least three

contributing reasons:

• A widespread belief, partially justified, that there were not enough good people

available to accomplish the amount of development that needed to be done.

Object Thinking, David West Preface

Microsoft Press CONFIDENTIAL 10/16/2016 9:24 AM Page 4 of 16

• An unspoken, but just as widely held, belief that really good developers were not to

be trusted – they could not be “managed” they all seemed to be “flaky” to some

degree, and they did not exhibit the loyalty to company and paycheck of “normal”

employees. Really “good” developers tended to be “artists” and art was (is) not a

good word in the context of software development.

• A suspicion, probably justified, that we did not (do not) know how to “upgrade”

average developers to superior developers – except by giving them lots of experience

and hoping for the best.

It is no longer possible to believe that “method” and “process” are adequate substitutes for

“good people.” There is a resurgence of interest – spurred mostly by XP and the core practices

in other Agile methods – in how to improve the human developer. This interest takes many

forms: ranging from XP itself; to redefinition of software development as a craft (McBreen3) and

a “calling” (West4, Denning5) instead of a “career;” to software apprenticeship (Auer6).

Why do we need better developers? Because increasing the supply of highly skilled people –

not methods, not process - is the only way to resolve the “software crisis.”

Better Developers
What makes a better developer? The traditional answer, experience. Most textbooks on

software engineering and formal process contain a caveat to the effect that extensive real-world

experience is required before the tools and techniques provided by the method/process can be

effectively utilized. In this context, experience is just a code word for those aspects of

development – philosophy, attitude, practices, mistakes, and even emotions – that cannot be

reduced to syntactic representation and cookbook formulation in a textbook.

Object Thinking, David West Preface

Microsoft Press CONFIDENTIAL 10/16/2016 9:24 AM Page 5 of 16

Today’s practitioners, and some theorists, are intensely interested in teasing apart and

understanding the complex elements behind the label “experience.” There is intense interest in

understanding what developers actually “do” as opposed to some a priori theory of what is

appropriate for them to do. Models are seen as communication devices – unique to a community

of human communicators – instead of ‘vessels of objective truth’ with a value that transcends the

context of their immediate use. Development is seen as a human activity – hence a fallible

activity – that must accommodate and ameliorate imperfection and mistakes rather than seek to

eliminate them. Communalism is valued over individualism. Systems are seen as complex

instead of just complicated, necessitating a different approach and different insights than were

required when software developers merely produced “artifacts that met specification.”

All of this intense interest is producing results. Although the total picture is still emerging,

some facets of ‘the better developer’ are coming into focus.

XP provides a foundation by identifying a set of discrete practices that can be ‘practiced.’

They are things that any developer can actually do, and by simply doing them, become a better

practitioner. They offer no grand theory, nor are they derived from any theory. The justification

for the XP approach is based on two simple empirical observations: “We have seen master

developers do these things;” and, “We have seen less proficient developers do these things and

become better.” Although XP does make claims to improve both product and process, these are

side effects (one is tempted to say mere side effects) of the improvement in the human

developers.

Object Thinking, David West Preface

Microsoft Press CONFIDENTIAL 10/16/2016 9:24 AM Page 6 of 16

Although XP (and the other Agile methods) provide a solid foundation, it is just the

foundation. What “Xgilistas”7 do is but part of what makes them master developers. What they

think, and how they think is critically important as well. There is a value system behind XP and

other Agile Methods, one that is occasionally made overt but more often is implicit. There is

history. There is context. There is oral tradition that has never been reduced to ink and paper

(and maybe cannot be so reduced). Aspiring Xgilistas must become conversant with all of this

before they can attain true “master” status.

The intent of this book is to provide one small contribution to help those following the

Xgilista Path. Specifically, a contribution in the area of “object thinking.”

Object Thinking
Thirty plus years have passed since Alan Kay coined the term “object-oriented.”

Almost all contemporary software developers describe their work using object

vocabulary and use languages and specification tools that lay claim to the object label.

The ubiquity of object terminology does not mean, however that everyone has mastered

object thinking. Nor does the popularity of Java. Nor does the de facto standardization

of object modeling embodied in UML. A prediction made by T. Rentsch (cited by Booch

in 19918) remains an accurate description of today’s development and developers:

 “My guess is that object-oriented programming will be in the

1980s what structured programming was in the 1970s. Everyone

will be favor of it. Every manufacturer will promote his products

Object Thinking, David West Preface

Microsoft Press CONFIDENTIAL 10/16/2016 9:24 AM Page 7 of 16

as supporting it. Every manager will pay lip service to it. Every

programmer will practice it (differently). And no one will know

just what it is.”

- Booch 1991

In fact, the situation may be worse than Rentsch predicted. An argument

can be made that the contemporary mainstream understanding of objects is but

a pale shadow of the original idea. Further, it might be argued that the

mainstream understanding of objects is, in practice, antithetical to the original

intent. Alan Kay certainly seems to think this is true.9

Clearly the “behavioral approach” to understanding objects has almost

disappeared.10 This fact is important for our immediate purposes primarily

because two of the leading advocates behind XP were also the leading

advocates of “behavioral objects.” Kent Beck and Ward Cunningham

invented the CRC card approach to finding and defining objects – the most

popular of the “behavioral methods.” Others deeply involved in the Agile

Alliance were also identified with “object behavioralism” and with Smalltalk

– the programming language the came closest to embodying behavioral

objects.

It is not unreasonable to assume that the behavioral approach to

understanding objects dominates the “object thinking” of many of the best XP

practitioners, in part because it was almost necessarily part of the oral

tradition passed on by Kent Beck as he initiated others into the XP culture.

Object Thinking, David West Preface

Microsoft Press CONFIDENTIAL 10/16/2016 9:24 AM Page 8 of 16

It is also reasonable to assume that behavioral object thinking is only

implicit in the XP / Agile culture because so few books or texts were ever

written in support of this approach. Neither Kent nor Ward ever wrote such a

book. Rebecca Wirfs-Brock and her co-authors have yet to update their 1991

offering on CRC cards and Nancy Wilkerson’s CRC book appears to be the

last effort in this area.

This is particularly unfortunate because the CRC card “method” as

described in the early 1990s did not incorporate all aspects of object thinking.

 In fact, I believe, that “object thinking” transcends the notion of “method”

just as it transcended programming languages. (You can do good object

programming in almost any language even though some languages offer you

more support than others and actually reinforce object thinking.)

Object thinking requires more than an understanding of CRC cards as

presented circa 1990. It also requires understanding some of the history and

some of the philosophical presuppositions behind object behavioralism, CRC

cards, and languages like Smalltalk. It also requires an understanding of the

metaphors that assist in good object thinking and extension of the CRC card

metaphor, in particular, to include more than object identification and

responsibility assignment.

Object Thinking, David West Preface

Microsoft Press CONFIDENTIAL 10/16/2016 9:24 AM Page 9 of 16

It is my hope that this book will promote such an understanding by

capturing at least part of the oral tradition of behavioral objects and making it

explicit.

A Different (and Possibly Controversial) Kind of
Software Book

This book will be deliberately different from almost any other object / component /

method / XP book you may have encountered. It is also likely to be controversial which

is not intended but is, perhaps, inevitable.

Several factors contribute to the differences and potential controversy.

• The reader will be asked to read and digest a lot of history and philosophy before embarking

on the more pragmatic aspects of object thinking.

• The author will present an unabashed, adamant, and consistent advocacy of “behavior” as the

key concept for discovering, describing, and designing objects and components.

• The centrality of CRC (Class-Responsibility-Collaborator) cards as an object thinking device

or tool will likely be viewed as anachronistic and irrelevant, since UML (Unified Modeling

Language) has achieved the status of de facto standard.

• The apparent indifference, or even antagonism, towards formalism and formal approaches to

software specification that is intrinsic to the behavioral approach will concern some readers,

especially those trained in computer science departments at research universities.

• The emphasis on analysis and conceptualization – thinking – instead of implementation detail

might strike some readers as too academic or ethereal.

Object Thinking, David West Preface

Microsoft Press CONFIDENTIAL 10/16/2016 9:24 AM Page 10 of 16

It will take the rest of the book to explain why these differences are considered important but the

motivation behind them is found in another quote from Grady Booch:

“Let there be no doubt that object-oriented design is fundamentally

different than traditional structured design approaches: it requires

different ways of thinking about decomposition, and it produces software

architectures that are largely outside the realm of the structured design

culture.”

- Booch 1991

“Different ways of thinking” is the key phrase in the Booch quote and the word “culture” is

equally important. The history of objects in software development is characterized by the mistaken

notion that the object difference was to be found in a computer language or a software module

specification. But objects are fundamentally different because they reflect different ideas –

particularly about decomposition – and because they reflect a different set of values and worldview

(i.e. a culture) than traditional software development. Understanding objects requires understanding

the philosophical roots and historical milestones from which objects emerged.

The first chapter of this book summarizes that context. Two philosophical traditions, one

(Formalism) supporting mainstream development practices and the other (Hermeneutics-

Postmodernism) supporting alternatives like objects, patterns, and XP are briefly introduced. A

highly focused examination of a few programming languages – and their history – shows how

philosophy becomes tangible. And finally, these roots are tied together in a discussion of the “object

culture” as a kind of ground or foundation for understanding object thinking.

Object Thinking, David West Preface

Microsoft Press CONFIDENTIAL 10/16/2016 9:24 AM Page 11 of 16

 Chapter two explores the role of metaphor and vocabulary in shaping object thinking.

Metaphors are essential for bridging between the familiar and the unfamiliar and selection of the

“right” metaphors is critical for further development of fundamental ideas. Vocabulary provides us

with one of the essential tools for thinking and communicating. It is important to understand why

object advocates elected to use a different vocabulary for object thinking and why it is inappropriate

to project old vocabulary onto new concepts.

Chapter three presents a brief discussion of methods and models, both of which are presented as

lacking in any intrinsic value. It is suggested that methods are little more than helpful reminders of

“things to think about.” Models, it is suggested, are nothing more than graphical vocabulary, a kind

of external short term memory, and useful only in the context of a particular group of people at a

particular point in time. These biases are linked to XP “method” in specific and Agile method in

general. The “Object Cube” is introduced as a specific model for thinking about objects and the

utility of some traditional models, like sequence diagrams, for supporting object thinking are

discussed.

Chapters four and five attempt to bring together the ideas introduced in early chapters and outline

how objecting thinking is made manifest. Chapter four focuses on objecting thinking as a foundation for

discovery and definition of objects while chapter five deals with elaborating objects and thinking about

their design and implementation.

Chapter six provides a collection of examples of object thinking and design consistent with the ideas

presented in the main portion of the book. Some of the examples provide a bridge to related areas of

software development thinking like patterns and architecture.

Object Thinking, David West Preface

Microsoft Press CONFIDENTIAL 10/16/2016 9:24 AM Page 12 of 16

However focused on a particular topic each section of this book might be, there is an overarching bias

or perspective that colors the discussion – i.e. “Behavioralism.” If a single word could be used to capture

the “… fundamentally different ways of thinking about decomposition” noted by Booch, it would be

behavior. The centrality of behavior is most evident when considering and comparing various approaches

to defining object model syntax, object application models, and methods for object development.

A majority of the published books on objects mention using behavior as the criteria for

conceptualizing and defining objects. Many claim to present behavioral approaches to object

development. However, with one or two exceptions11 they provide object definitions and

specification models that owe more to traditional concepts of data and function than to behavior.

Even when behavior is used to discover candidate objects, that criteria is rapidly set aside in favor of

detailed discussion of data attributes, member functions, and class/entity relationships.

This focus on behavior, and all its aspects and implications, is consistent, I believe, with both the

origins of object ideas and the design tradition assumed by XP and to a lesser extent the other Agile

approaches.

Material in the book is presented in a matter-of-fact style as if everything stated was

unequivocally correct. Alternative ideas and approaches are cited but there is little effort to

incorporate those alternatives or to discuss them in detail. This is not because the author is

unaware of other viewpoints nor that he is dismissive of those viewpoints. Alternative ideas are

best expressed by their advocates, and, to the extent that this book is used as a classroom text,

discussion of those alternatives is best conducted by an instructor.

Intended Audience

Object Thinking, David West Preface

Microsoft Press CONFIDENTIAL 10/16/2016 9:24 AM Page 13 of 16

A conscious effort has been made to make this book useful to a wide audience that includes

professional developers and post-secondary students as well as anyone with an interest in understanding

object-oriented thinking.

The contents of this book derive from material used in graduate software engineering classes where

90% of the students are employed as software developers and in several different commercial

seminars12. It generally assumes that the students know a great deal about software development but

little or nothing about behavioral object thinking. This book is, in part, a response to requests to

consolidate material currently provided only in lectures and discussions.

A profile of the typical student in those courses and seminars best defines the target audience for the

book. They are professional software developers, averaging eleven years of experience, or managers

overseeing the software development process. They may be pursuing formal education at the graduate

level but, if so, will likely be enrolled in applied programs of software engineering or business rather

than theoretical computer science programs. Most will have encountered object concepts and many will

have taken at least one other object class, usually a method or programming oriented commercial

seminar.

Three caveats help to further define the audience for this book.

• This is not a programming text. Some limited examples of pseudo-code (reflecting

Smalltalk syntactic conventions) are be presented when they can illuminate a concept or

principle of development.

• The book, however, is expressly intended for programmers, especially those using Java

and C++. It is hoped this book will facilitate their work, not by providing tricks and

compiler insights, but by providing conceptual foundations. Languages like C++ and

Object Thinking, David West Preface

Microsoft Press CONFIDENTIAL 10/16/2016 9:24 AM Page 14 of 16

Java require significant programmer discipline if they are to be used to create “true”

objects and object applications. That discipline must, in turn, be grounded in the kind of

thinking presented in this book.

• Although this book stresses the philosophy and history of objects/components, the

primary focus remains on assisting people to develop pragmatic skills.

The reader is encouraged to engage the book in the order presented. It is possible to skip

chapter one if the reader is prepared to take on faith the assertions made about objects and object

thinking in subsequent chapters.

If this text is used in an academic course (undergraduate or graduate) roughly forty percent of

the available class time should be devoted to workshop type activities. Software development of

any kind is learned through experience but objects, because they are new and different, require

even greater amounts of reflection and practice. Another characteristic of an ideal course is

interaction and discussion of multiple viewpoints. This book is best used in conjunction with

other method books (particularly any of the excellent books on UML or RUP) that can present

alternative viewpoints and, of course, at least one of the XP or Agile texts to add depth to what is

presented here.

About the Author
Currently Dr. West is a professor in the School of Business at New Mexico Highlands

University where he is developing an object-based curriculum in software architectures, business

engineering, and management information systems. He also teaches at the University of New

Mexico and is engaged in developing a software development track for students in graduate and

undergraduate computer science at that school.

Object Thinking, David West Preface

Microsoft Press CONFIDENTIAL 10/16/2016 9:24 AM Page 15 of 16

Prior to joining the faculty at NMHU he was an associate professor in the Graduate Programs

in Sofware at the University of St. Thomas and a consultant/trainer to several Fortune 500

companies. He has taught courses in object-oriented development ranging from three-hour

introductory sessions for managers, to multi-day technical seminars for professional developers,

and semester long courses at both the graduate and undergraduate level.

He founded and served as the Director of the Object Lab at the University of St. Thomas.

The Object Lab was a cooperative effort with local corporations dedicated to researching and

promoting object technology.

He was a co-founder of the Object Technology User Group (the original, not the Rational

sponsored group), first editor of its monthly newsletter, and principal organizer and chair of two

regional conferences – attracting over 500 paid attendees – sponsored by OTUG.

Digitalk’s Methods (the first incarnation of Smalltalk for the personal computer – later

named Smalltalk/V) was his first object development environment – used to construct an

“automated cultural informant,” a teaching tool for cultural anthropologists learning

ethnographic fieldwork techniques. His object experience is complemented by over twenty years

of software development work, ranging from assembler programmer to executive management.

His undergraduate education at Macalester College (oriental philosophy and East Asian

history) was capped with an MS in computer science (artificial intelligence) and an a MA in

cultural anthropology followed by a Ph. D. in cognitive anthropology. All the graduate degrees

were earned at the University of Wisconsin at Madison.

Object Thinking, David West Preface

Microsoft Press CONFIDENTIAL 10/16/2016 9:24 AM Page 16 of 16

1 West, David. “Enculturating Extreme Programmers,” Proceedings …..
2 Parnas, David Lorge and Paul C. Clements. “A rational Design Process: How and Why to Fake It.” IEEE
Transactions on Software Engineeering. Vol. SE-12, No. 2, February 1986.
3 McBreen, Peter. Software Craftsmanship.
4 West, David. “Enculturating Extreme Programmers” and “Educating Xgilistas”
5 Denning, Peter. ACM editorial.
6 Ken Auer, www.rolemodelsoft.com.
7 A neologism – useful for labeling those that embody one or more of the approaches that fall under the ‘Agile”
label.
8 Booch, Grady. Object-Oriented Design. 1991.
9 Kay, Alan. “The Object Revolution Hasn’t Happened Yet.” 1998?.
10 Yes, UML does allow for a “responsibility” segment in their class diagram and description. But this hardly
offsets the dominant trend in UML to treat objects as if they were “animated data entities” or “miniature COBOL
programs.”
11 Wirfs-Brock’s, Weiner’s, and Wilkerson’s, Objected Oriented Design offers a behavior based method, as does Wilkinson’s Using
CRC Cards.

12 Much of the material has also been used successfully in undergraduate courses where students are limited in their software experience
but have had numerous courses in traditional software development or computer science. It has also been used with remarkable success
with audiences having absolutely no computer background!

