
Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 1 of 30 

 

 

 

 

 

4 

Metaphor: Bridge to the Unfamiliar 
 

Along the philosophical fringes of science we may find 

reasons to question basic conceptual structures and to grope 

for ways to refashion them.  Old idioms are bound to fail us 

here, and only metaphor can begin to limn the new order. 

Quine 

 

Explanations without metaphor would be difficult if not 

impossible, for in order to describe the unknown, we must 

resort to concepts that we know and understand, and that is 

the essence of metaphor. 

MacCormac 

 
Object philosophy generates a different view of the world, one that is strange to 

most and especially to developers trained in conventional methods and ideas.  This raises 

the question of how best to assist developers to understand the "new world of objects."  



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 2 of 30 

In other disciplines metaphor is frequently used to help those new to an area of study 

comprehend its fundamental concepts. 

Consider the Bohr model of an atom, as one example.  Physicists and chemists 

need to explain atomic structure to lay people and to new students.  One common way to 

do so is to employ Bohr's metaphoric model that says an atom is like a tiny solar system - 

a nucleus (sun) surrounded by orbiting electrons (planets).  This metaphor is technically 

wrong of course but remains a useful tool for introducing atomic concepts. 

Unsurprisingly, metaphors have also been used to convey object concepts.  One of 

the earliest, coined by Brad Cox, is the "software IC (integrated circuit)."  This metaphor 

juxtaposes a desirable trait for software objects with hardware components, that is the 

ability to use them as standardized and interchangeable parts to “mass produce” larger 

constructs.  It is possible, for example, to shop at a number of electronics stores, buy 

standard components from a variety of manufacturers and use those components to 

assemble a working personal computer.  Construction of software in a similar manner is 

one goal of object-orientation, hence the applicability of the metaphor. 

Behind the Quotes 
Brad Cox 

Brad Cox was one of the earliest advocates of object oriented programming and 

was the developer of the Objective-C programming language that was the core of the 

Next Computer operating system (Next was the first company started by Steve Jobs when 

he left Apple Computer) and development environment.   Objective-C was Smalltalk 

with the efficiency and power of the C programming language. 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 3 of 30 

Dr. Cox coined an early metaphor for object components – software IC’s – 

suggesting that software components should be as modular and as composable as the 

integrated circuits (IC’s) used to build hardware.  Given an appropriate set of IC’s, 

software could be mass produced – cheaply and with quality – just as guns were, after 

Colt and Remington invented standardized parts for guns. 

One of Dr. Cox’s most intriguing ideas was the concept of “Superdistribution.”    

The core idea of superdistribution was to make individual software modules available via 

the Web and charge for their use, object by object – a concept that is evident in 

Microsoft’s vision of Web services. 

Dr. Cox recently resigned from George Mason University to concentrate on a 

company that will make superdistribution a reality.  He has many other interests and his 

Middle Of Nowhere (http://www.virtualschool.edu/mon) is well worth a visit. 

 

 

The software IC metaphor is less helpful, however, when our concern is object 

discovery and specification because it only tells us of a desirable trait for the finished 

product.  Alan Kay, Adele Goldberg, Ken Rubin, and Phillipe Kahn, among many others, 

employ the metaphor of a person when engaged in the process of discovery and analysis.  

An object is like a person.  This metaphor is sufficiently important to object thinking that 

it warrants its own special term – anthropomorphization.  And, of course the more 

syllables a word has, the more important it must be.  We will return to this metaphor 

later. 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 4 of 30 

Metaphors are not just a tool to explore the unfamiliar.  Metaphor is essential to 

everyday thinking as well.  The full importance of metaphor in shaping our thoughts has 

received a lot of attention in recent years, notably in the work of George Lakoff. 

Behind the Quotes 
George Lakoff 

Professor Lakoff teaches and researches linguistics, cognitive science, and 

cognitive philosophy at UC Berkeley.  His books most likely to be of interest to readers 

of this book include:  Metaphors We Live By; Women, Fire, and Dangerous Things; and, 

Philosophy in the Flesh.  Lakoff’s work is frequently cited by those criticizing traditional 

approaches to software development – especially the kind of set based category theory 

underlying traditional approaches to data and data modeling – as well as those advocating 

a more human-centric approach to computing and the software development process. 

Dr. Lakoff ‘s research reveals the central role of metaphor in all human cognition 

and provides a foundation for Kent Beck’s ideas about metaphor in extreme 

programming – everything from the value of a system metaphor (in lieu of architecture), 

to the need for metaphorical awareness when creating object and method naming 

conventions. 

 

 Metaphor shapes our thinking in many different ways. 

· It helps in discovery – if our system is like an “X” then this component is probably 

like a “Y”. 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 5 of 30 

· It helps us make design decisions – “when a person is asked for id they usually hand 

over some sort of document (drivers license, etc) so our object probably should store 

identifying information in some other kind of object instead of in instance variables. 

· They provide handy ways to remember principles of object thinking – “objects are 

naturally lazy and this is starting to look hard, we had better refactor our design and 

split this work up among several objects.”  

· They help us avoid old ways of thinking by avoiding the metaphors that are 

associated with that kind of thinking – instead of “next the machine needs to do this” 

we use “just ask object X to do that.” 

Metaphor plays a critical role in XP as well as in object thinking.  Kent Beck used 

his keynote address at OOPSLA 2002 to explore all the ways that metaphor affects all 

aspects of XP.  One of the twelve practices in XP is the system metaphor which is 

deemed powerful enough to eliminate the need for detailed up-front architectural design 

to guide development.  In Kent’s book on Test Driven Development1 he talks about how 

different metaphors led to several different designs and implementations of “multi-

currency money.” 

Metaphors are very powerful.  Object thinking is absolutely dependent on 

selecting and employing the “right” metaphors.  Each metaphor – whether general or 

specific to design details – must be consistent with the philosophy behind objects as 

discussed in previous chapters.  In this chapter we will introduce several key metaphors. 

The Lego Block Metaphor 
 

Our first metaphor helps us think of important object characteristics, like 

composability, simple interfaces, and comprehensibility (limited number of forms).  It 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 6 of 30 

also illuminates important aspects of the object-oriented software development process – 

most notably, the fact that there are two distinct though related processes required. 

Let’s express the metaphor as a dictum: software should be assembled from a 

finite set of composable units the way that dinosaurs, and castles, and spaceships are 

constructed from a common set of Lego Blocks.  It is no accident that the first special 

issue of the Communications of the ACM devoted to objects had a cover photo of stacked 

red and yellow Legos. 

On its face this seems to be a restatement of Brad Cox’s software IC metaphor.  

But there are depths and nuances to this metaphor that are missing from the simpler 

‘software IC’ idea.  Like Cox’s metaphor, this one tells us that we should be able to 

construct an arbitrary number of software artifacts from a finite set of standard parts. This 

is a characteristic of many other aspects of nature as well as mass produced products. For 

example: the world around us constructed from a very finite set of parts, atoms of the 

periodic table or below them the quarks, especially given the variety and complexity of 

the things manifest in the World.  Houses are constructed from 2x4s, nails, 4x8 sheets of 

plywood, etc.  Even societies are built from, “butchers, bakers, and candlestick makers.” 

By focusing on the composable nature of Lego Blocks, the metaphor reminds us 

of how object thinking views the importance of decomposition and composition 

(remember Plato’s views quoted earlier).  The metaphor also reminds us of the 

importance of reuse.  Reuse in the sense that the same block can be used in many 

different contexts.  Reuse in the sense that you can remove a block from a dinosaur and 

recycle it in the construction of a space station. 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 7 of 30 

More importantly perhaps, it reminds us of the fact that simple and obvious 

interfaces are required if our objects are to be as composable and as useful as Lego 

Blocks.  Further exploration of the metaphor and its implications suggest ways to 

discover, design, and build truly reusable and composable objects.  This alone would 

make the metaphor extremely valuable.  Given that developers have pursued the dream of 

reusable code libraries from the very advent of computing – with very limited success – a 

way to actually accomplish that goal would be invaluable. 

Exploration of the metaphor begins with considering what it implies about 

development process – the suggestion that there is a necessary separation between the 

process required to create objects (Lego Blocks) and the process of assembling those 

objects into useful products (software, in our case).  The metaphor suggests that: 

· Creators are (probably) adults working for the Lego Corporation. 

· Users are children (at least at heart), ages four to adult. 

· Creators have specific concerns and use specialized processes to accomplish their 

goals 

· Users care little about the components, as components.  Their concerns focus on what 

can be built with the components and the ability of the artifact to satisfy their needs. 

· The component ‘engineers’ need to be very concerned with the internal structure of 

the blocks, what kind of plastics will yield the correct degree of malleability, 

colorfastness, friction to keep them together, spacing of the pips at the top of the 

block, etc. etc.  They also have to create components that transcend particular 

applications because their goal is to build blocks equally useful for dinosaur and 

spaceship construction.  More importantly they want blocks that can be used 

successfully by an unknown end user to build whatever it is that they have imagined. 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 8 of 30 

· Users want to easily move from concept to construction without the need to concern 

themselves with technical details.  They want rapid feedback, they want to be able to 

change their mind mid-construction, and they want the artifact constructed to operate 

in their world as it is.  

Applied to software the metaphor suggests separation of domain decomposition 

and object definition from the tasks of assembling applications and solving specific 

operational problems.  To some degree, with some implementation languages, this 

separation has started to occur.  Consider the class libraries that come with a language 

like Smalltalk or Visual Basic.  Many of the classes (the collection and magnitude 

classes, for instance) in such libraries reflect the same kind of general and abstract 

thinking that leads to good “software Legos.”  Another example is the attempt to create 

visual programming environments for application assembly that are, at least quasi-

independent of the underlying implementation language.  Such attempts are but a start 

towards an “object mature” world where the two tasks are as clearly separated as they are 

in the world of Legos. 

   I would like to bring to the reader’s attention a nuance of this metaphor as 

“something to think about” without attempting to fully develop the idea.  The 

metaphor suggests differentiation between users and creators that, in the case of the 

Lego Block is, is very different from the similar distinction made in this book.  A 

Lego user is a child – a kind of ultimate consumer.  In the case of objects and 

software, we are treating other programmers as users. 

   If we were to be completely consistent with the Lego metaphor we would have to 

argue in favor of delivering objects to end-users, those filling roles in business and 

organizational worlds, and not to programmers.  The “objects” would have to be 

directly usable without the need to use programming environments and compilers.  



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 9 of 30 

Each component would be need to be a small executable program, modifiable via user 

messages; not modules of source code made available to programmers. 

 

Another, critically important, aspect of the metaphor is the ability of users to 

successfully employ the blocks based solely on their intuitively obvious external 

characteristics.  A child can look at a block and instantly tell if it is suitable for inclusion 

in the project at hand.  It is not necessary to know anything about the chemistry of 

plastics or whether this particular block was made at “Sun Lego Corporation” or 

“Microsoft Lego Corporation.”  There is no need to read a complex user manual that 

explains either the block or how to use it.2  

Software objects cannot even approximate this degree of composability, but the 

metaphor suggests that full realization of object potential requires satisfaction of this 

characteristic. 

The fact that two different groups of people, and two different processes, are 

involved in block creation and artifact assembly, one group adults and the other children 

might lead one to believe that the metaphor de-skills the task of application assembly - 

after all it can be done by children (or end-users, perhaps).  This would be a misleading 

conclusion. 

The LegoLand store in the Mall of America (where I first encountered one) 

periodically sponsors two events.  In the first, children are invited to use the unlimited set 

of blocks at hand to construct various things.  Prizes are given to the best constructions.  



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 10 of 30 

The second invites professional architects and designers to use the same blocks to create 

various structures that were then sold as part of a charity auction. 

As should be expected there was a large qualitative difference between the 

constructions of the architects and those of the children.  The building blocks remained 

the same.  The architects, however, were able to bring to bear other skills, proportion, 

geometry, aesthetics, etc. that the children did not yet possess.  The architects were 

domain experts (end users) that were able to use the blocks to build solutions that fully 

exploited their domain knowledge.  They were able to use the blocks to simulate the way 

they wielded girders and bricks in the real world domain where they worked. 

Here too software objects do not come close to providing the “language” sought 

by Kristen Nygaard or the interactive milieu sought by Alan Kay. 

Following up the immediately preceding note – perhaps the users of objects would 

not have to be the ultimate end-user, but could be a new kind of professional 

“assembler” or “collage artist” with a set of skills not available to the end user, but 

quite different from those required by traditional programmers and software 

developers.  The demand that objects be run-time modifiable executable programs 

would not change. 

 

Two other items suggested by the metaphor are related.  Objects should be simple 

and there should be relatively few of them.  There are less than 10 basic Lego Block 

types.  (Kits contain additional parts, each of which is highly specialized, like tiny human 

figures and motors, but these cannot be considered true Legos.)  There are only 134 

elements and only six quanta.  The vast majority of houses in this country are built with 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 11 of 30 

less than ten standard sizes of dimension lumber.  In all of those cases as well, the base 

elements are simple and highly specialized. 

How Many Objects? 
One of the heuristics for object discovery is, “find the nouns.”  Each noun in a 

domain description is a potential object class.  Estimating the “minimal class set” could 

involve a simple count of nouns employed in a domain. 

   Expanding on this heuristic – how many classes would be required to model the 

Universe?  Well, how many nouns are required? 

   The Oxford English Dictionary has about 550,000 words.  An English teacher 

once told me that about 40-45% of the words in a dictionary will be nouns. 

   If we eliminate proper nouns and synonyms that percentage will be reduced to 

around 25-30% of the words describing potential objects.  Eliminating archaic nouns – 

bodkin and amanuensis, for example – will reduce the percentage still further, 15-20% 

perhaps.  This translates into about 110,000 classes.  A pretty large number but clearly 

finite. 

   Instead of the OED, however, a better estimate might be obtained using the 

vocabulary required to read the average daily newspaper.  Most things are quite 

adequately described in a newspaper. 

   Vocabulary required to read a typical newspaper – about 1,400 words! 

   Using the 30% estimate (we don’t have archaic terms to eliminate, hopefully) 

this suggests a need for only 420 classes.  Allowing liberal ability to add classes 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 12 of 30 

representing objects that do not make the paper and we still come up with less than a 

thousand classes to model all typical domains of human interest. 

   If your problem domain – or worse, your application – has thousands of classes 

(and I have seen some) then you probably have yet to master object thinking. 

 

 

This suggests that there is a similarly small number of objects from which we can 

construct any type of software needed to model any domain or organization.  (See 

sidebar, How Many Objects?) 

It is frequently convenient to build a large construct from smaller, but not the 

smallest possible components.  It is easier to build living things with hydrocarbon 

molecules than directly with individual atoms.  It is easier to build a roof with a truss 

made of 2x6 boards and gang nails than a board and a nail at a time.  Intermediate 

constructs, like trusses used to build houses, are components.  The number of components 

will be much larger than the number of objects from which those components are 

constructed.  Moreover, they will likely reflect stylistic differences reflective of the 

designers and potential users of such components. 

The last item suggested by the metaphor deals with process.  Watching a child 

work with the blocks reveals a process of discovery filled with a certain amount of trial 

and error and supportive of rapid change as prototypes fail to meet satisfaction criteria 

and so are taken apart and reassembled in another attempt to reach the envisaged goal. 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 13 of 30 

XP development closely resembles “playing with Lego Blocks” in the sense that it 

too allows discovery and emergent solutions, tolerates and leverages mistakes, 

encourages taking things apart and reassembling them into more elegant solutions 

(refactoring), and relies heavily on feedback as to the extent to which the current 

assembly meets user expectations. 

Both XP and the metaphor suggest a need for a development environment that 

supports this kind of development process model.  Smalltalk and visual programming 

environments, like Visual Studio, provide examples of development environments and 

tools that are superior to, in this regard, “compile-link-test” environments like C++ (even 

Visual C++ with incremental compilation).  This notion would seem to be born out in 

experience.  It typically takes about half the time to develop an application with Smalltalk 

than C++, given equivalent levels of skill in the developers, even with current 

incremental compilers.  Even advocates of languages like C++ will tend to cede the 

speed-of-development issue and focus instead on characteristics-of-product issues like 

speed of execution. 

Object as Person Metaphor 
 

People are objects and objects should be conceptualized as if they were people.  

Projecting human characteristics onto inanimate things is called anthropomorphization.  

Anthropomorphizing in a philosophy class might earn you a poor grade but it is essential 

to a good understanding of objects. 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 14 of 30 

Phillipe Kahn starred in, The World of Objects, a video he produced to illustrate 

object concepts.  He used musicians, a specialized type of human being, to illustrate the 

anthropomorphization of objects.  Mr. Kahn noted that he is capable of playing numerous 

instruments and splicing the results together to create a finished piece of music.  Better 

results with less work, however, would be obtained by engaging a group of talented 

musicians - each of whom was a specialist in some instrument or aspect of music.  He 

could then communicate his desires to them, allowing them to respond to those desires 

using their innate skills, knowledge and abilities. The musicians would be asked, at a 

relatively high level (asking the percussionist for some "color," for example) for some 

service.  They in turn would interpret (make sense of) those instructions in terms of their 

own abilities, experience, and even awareness of the context in which the request was 

made, then respond in an appropriate manner. 

Behind the Quotes 
Phillipe Kahn 

Phillipe Khan was the founder of Borland International, once one of the largest 

software companies in the world and leader in the field of integrated development 

environments (IDE) that combined programming language, editor, incremental compiler, 

debugger, and visual tools to simplify and speed up software development. 

Borland was an aggressive early adopter of object ideas for its own software 

development and enjoyed numerous early successes with object technology.  Mr. Kahn 

left Borland, and the world of the PC, to concentrate on network applications as CEO of 

Starfish Software.  His current work still reflects a commitment to object ideas. 

 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 15 of 30 

 

This metaphor tells us that an object needs to be an agent capable of providing a 

specified set of services.  It has access to a body of knowledge (some of it internalized) 

that it uses to respond to our service requests as well as any necessary mechanisms 

(talents and skills) and resources (instruments, a computer, or whatever else it may need).  

It also tells us that the (only) appropriate way to determine if an object will suit our needs 

is by a careful review of its resume. 

Applying this metaphor can feel a bit strange at first. What, for example, are the 

talents or skills possessed by a book?  What services can, or does, it provide?  What 

knowledge does it require in order to respond to requests for those services?  What 

resources does it need?  These appear to be hard, or nonsensical, questions to answer.  

But with some practice, a book is revealed as: 

· A collection of page objects. 

1. Working with those page objects it maintains order (sequence).  

· An object capable of identifying itself. 

· An object that can describe itself. 

2. The description being an separate object which can provide individual 

elements of the description – like date published, author(s), publisher, etc. 

· An object than can provide the reader with access to a specific page or a group of 

pages (chapters) upon request. (Also in collaboration with the page or chapter 

objects.) 

· An object that acts as a “front” for a community of objects (pages, tables of contents, 

indexes, chapters, etc.) allowing users of the community a convenient point of 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 16 of 30 

contact.  Requests can be sent to the book, knowing that the book will relay those 

requests to the actual objects capable of responding, without interference. 

· At one point in its life (in the days it was a mere unpublished manuscript), it also was 

able to add and delete pages to its collection and still maintain the proper order. 

If objects are persons, they are limited in some of the same ways as human 

persons.  One example, they need to know certain things in order to complete an assigned 

task.  When the book was young and still being composed (playing the role of 

manuscript), it might be asked to add a page to its collection of pages.  In order to do this 

it needs to know the page to be added. 

Like people, software objects, are specialists.  They are also lazy.  A consequence 

of both these facts is the distribution of work across a group of objects.  Take the job of 

adding a sentence to a page in a book.  While it might be quite proper to ask the book, 

“please replace the sentence on page 58 with the following ‘ …’.” (The book object is 

kind of a spokesperson for all the objects comprising the book.)  It would be quite 

improper to expect that the book itself actually did the work assigned.  If the book were 

to do that kind of work it would have to know everything relevant about each page and 

page type that it might contain and how making a simple change might alter the 

appearance and the abilities of the page object.  Plus the page might be offended if the 

book attempts to meddle with its internals. 

The task is too hard (lazy object) and not the book’s job (specialist object) so it 

delegates – merely passes to the page object named #58 the requested change.  It is the 

page object’s responsibility to carry out the task.  And it too might delegate any part of it 

that is hard – to a string object perhaps. 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 17 of 30 

Following these patterns we let the book and the page do what each does best and 

what is appropriate for each.  If we need a service that requires a contribution from more 

than one object we either assume responsibility for asking the objects for their individual 

contributions and assembling those results in a way that suits our purpose; or, we send the 

request to whichever object is acting as spokesperson for the group and allow it to 

delegate tasks and assemble responses in order to reply to our request. 

The person metaphor guides our decomposition and our assignment of 

responsibilities to software objects that, always, reflect the demands of the domain, not 

their eventual implementation.  Our software object should simulate the services provided 

by our real world object, both of which we metaphorically regard as “people.”  Even 

though it is true that we must be more precise in specifying our software object, it is 

critically important that we continue to use the real world and not the computer 

(implementation) world as the foundation for our conceptualization of the software 

object. 

We said that objects have access to all of the resources necessary to do their jobs.  

In the case of a software object this means that each object is assumed to have access to 

all of the resources of an arbitrarily complex computer system if necessary.  This is one 

reason that Alan Kay calls objects, "intelligent virtual computers."  Because we are 

conceptualizing each of our objects as possessing its own computer (virtual computer or 

thread) we have the foundation for concurrent or parallel processing systems.  Objects, 

like the people we metaphorically equate them too, can work independently and 

concurrently on large-scale tasks, requiring only general coordination.  When we ask an 

object collective to perform a task, it is important that we avoid “micro-management” by 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 18 of 30 

imposing explicit control structures on those objects.  You don’t like to work for a boss 

that does not trust you and allow you to do your job, why should your software objects 

put up with similar abuse? 

Variations on the object-as-person metaphor include the object-as-agent 

metaphor.  This is really the same idea but focused on seeing the object only in terms of 

the services it provides on a particular client’s behalf.  The only difficulty with this 

variant metaphor is the possibility of creating a lot of agents defined by client needs 

instead of finding a general agent abstraction that can serve the needs of multiple clients.  

The latter will be a more composable object and is far more reflective of how we view 

people – you can do your job on behalf of many different employers in widely divergent 

businesses.  Design your “object people” with the same capability. 

Earlier we compared a kindergarten teacher, as classroom administrator, to a 

book.  We assigned a “role” to the teacher.  In the real world we think nothing of people 

fulfilling multiple roles.  People are actors and objects can also be actors.  This metaphor 

leads into an entire category of theatrical extensions, (some discussed below).  It means 

that a single object can appear quite differently in different contexts.  Mel Gibson can be 

Hamlet or The Road Warrior, two distinctly different roles.  A collection object can be 

used to replicate the behaviors of a book or a parking lot, depending on the context and 

the values and objects manipulated as it performs its services. 

 

Software as Theater, Programmers as Directors 
 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 19 of 30 

Engineering conveys an image of bridge or building construction.  Software 

engineering is therefore a metaphor for how software should be constructed, i.e., in a 

manner analogous to constructing a physical structure.  Formalists love this metaphor but 

object advocates find it counterproductive.  A better metaphor for assembling objects to 

collectively perform tasks is, “theater.” 

Software development is analogous to casting and directing a play.  First task is to 

select a your players – the objects that will collectively complete the expected tasks.3  

Provide the cast with a script (cues and dialog).  Test them (practice or rehearsals) to 

make sure you have the right actors and the right cues and dialog, then, when satisfied, 

put them on stage and raise the curtain.  If you have done you job well the actors will 

proceed through the play and the audience will be provided the service of entertainment. 

Most software development involves the recreation of an “old standard” an 

original play that was already cast and performed in the real world using human and 

tangible objects (actors).  Software developers face the same challenge as stage directors 

– how to make the play innovative and fresh without alienating the audience by removing 

too much of the familiar and expected. 

As fanciful as this metaphor may appear, it is deadly serious.  And it reveals one 

of the flaws of traditional software development – focus on the artifact instead of the 

system in which the artifact will operate.  Software (computer) artifacts that fail to 

simulate, in a reasonable familiar manner, and that are unable to interact with the other 

objects in the real world that the software artifact will operate will fail.  Software 

development is reality construction (or reality reconstruction) just as Floyd and her 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 20 of 30 

colleagues have asserted.  And the theater metaphor helps us accomplish our task by 

reminding us “that all the world is a stage” and that our artifacts are but actors on that 

stage. 

Occasionally developers have a chance to create a brand new reality.  Most of what we 

get paid for, however, is simply reproducing standard works.  Sometimes that involves 

replacing a single actor – like casting Mel Gibson as Hamlet instead of Laurence Olivier. 

Some times it involves an almost complete surface change – like the Star Trek episode 

that basically restages Moby Dick in outer space.  (Picard as Ahab, the Borg as the white 

whale.)   The theatre metaphor adds the concept of verisimilitude (the appearance of 

being real) as a criterion for good software and system design. 

  Sometimes the script followed by our object actors will be fixed.  In software, 

most batch processes would be considered to have a fixed script.  But more and more 

software needs a mix of fixed and extemporaneous scripts.  Extemporaneous scripts are 

those that are highly interactive and where the conversation is not predictable in advance. 

Visual programming environments provide an illustration of this metaphor.  

Object (cast) selection is accomplished by dragging iconic representations from a catalog 

to a workspace.  Links, between or among, objects are established by drawing lines to 

connect them with each other.  Each link defines a circumstance in which one object 

communicates (events and messages are two types of communication) with another.  The 

collection of links established in the workspace is the script for that group of objects. 

The play (theatrical production) metaphor can be extended a bit further. Plays 

come in many sizes and the complexity of the script varies accordingly.  A one person 

play being relatively simple to produce (but one that requires an exceptionally talented 

actor) while a Cecil B. DeMille epic with a "cast of thousands" is considerably harder to 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 21 of 30 

organize.  The complexity of object oriented application software is in the scripting, not 

the objects. 

Our tools, as applications software developers, for dealing with this complexity 

are still quite limited.  One need only reflect on the rapid accumulation of visual clutter, 

(overlapping lines, obscure icons) in a visual programming work space to see how limited 

our ability is to describe large-scale interactive scripts.  Like any other complicated task, 

we will attempt to solve this problem by decomposing our play script into act and scene 

scripts. 

Three additional aspects of this metaphor deserve some discussion before moving 

on.  First, although we classify plays as being of various types depending on their 

complexity and scope, all theater is essentially the same, a group of actors focused on 

accomplishing a particular objective, coordinated by a script.  With software we 

distinguish between objects, components, applications, subsystems, and systems for our 

convenience.  Close examination reveals that in each case we have a number of objects 

focused on accomplishing a small list of tasks while constrained by a guiding script.  This 

tells us that we need to apply the same principles of object philosophy whether we are 

constructing the most specific class or a system with wide scope.  We do not suddenly 

revert to old habits just because the job is larger. 

Second, replacing actors of similar talent and skill set should not require a rewrite 

of the script for a play.  Substituting objects capable of the same behavior should not 

require a redesign of the software.  We should be able, in fact, to nuance or dramatically 

change the overall behavior of our software simply by changing players.  A drama can be 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 22 of 30 

turned to a comedy simply by replacing dramatic actors with comedic actors.  The latter 

receive the same cues and deliver the same basic behavior (say the same lines) but use 

their innate abilities to interpret the cues and respond in very different ways.  This point 

will become important later when we discuss application frameworks. 

Third, just as plays are categorized by genre it is appropriate to extend the theater 

metaphor to software and classify systems into genres, based on typical forms of 

organization or architectures.  An architecture as a patterned way of organizing a set of 

actors, as is a genre.  We generate expectations and constrains that will apply to our 

actors based on the genre of the performance, or the type of architecture. Architectures 

also provide general solutions or frameworks that make it easier to conceptualize the 

organization of our cast.  Patterns (genres) provide ‘script templates’ to which the 

designer adds detail in order to construct the actual script used by an object collective to 

complete its work. 

Architectural patterns will be discussed in Chapter Nine, Objects on Stage.  “Pipes 

and Filters,” “Model-View-Controller (MVC),” “Blackboards,” and “Client Server” 

are but a few examples of software architectural patterns that will be discussed. 

Care must be taken, however, to make sure that assumptions implicit to the 

architecture (genre) do not contradict or contravene object thinking.  It would be difficult, 

for example, to use the typical “Hierarchical Control” script that is embodied in the 

infamous program structure chart popularized by Yourdon and Page-Jones in an object 

fashion. 

 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 23 of 30 

Ants, Not Autocrats 
 

Control is anathema in the object paradigm.  It is replaces with a kind of “blind 

coordination” as exemplified in the traffic signal example in Chapter 3, From Philosophy 

to Culture.  A traffic signal is “blind” in the sense that it does not need any awareness of 

other objects or their goals to accomplish its own tasks.  Any sense of traffic control has 

been distributed to the collection of objects in the intersection and not to any single 

object. 

The traffic signal assumes responsibility for monitoring the passage of time and 

cycling through a change of states at appropriate intervals.  (Green for 20 seconds, 

Yellow for 10 seconds, Red for thirty minutes4.) It also assumes responsibility for 

notifying others of its current state by broadcasting that state via an externally observable 

colored light.  Automobile (or driver) objects assume responsibility for inhibiting or 

expressing their own behavior (Stop on Red, Go on green, Accelerate on Yellow5) as a 

consequence of their awareness of the signal.  Neither automobiles nor drivers know 

anything about the workings of traffic signals just as signals know nothing about 

automobiles or drivers. 

This kind of blind coordination seems to work well in small-scale examples like 

the traffic signal, but does it “scale up?”  The answer, suggested by ants, termites, and 

biological communities, is yes.  “Hive communities” collectively construct extremely 

elaborate structures, efficiently exploit natural resources (like food) without the need for 

architects or overseers.  No single ant is in charge of making sure that a group of ants 

perform.  Food foraging begins when a single discoverer ant broadcasts his (the only 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 24 of 30 

female ant, the queen, is back in the hive) discovery to the other ants by exuding a 

particular pheromone.  Other ants detect the pheromone and respond by moving to the 

food source then back to the hive, also exuding the same pheromone.  No ant is aware of 

the identity of any other ant.  They do not seem to care if there are other ants around.  

They simple detect an event (receive a message) and respond according to their intrinsic 

nature. 

If the idea of patterning software architectures on ant or termite colonies makes 

you uneasy, you might consider the work of Marvin Minsky in computer based artificial 

intelligence.  Minsky (who many also credit with the idea of OO programming) posits the 

construction of intelligence by utilizing non-intelligent actor/agents (objects) that make 

simple decisions based on their own local awareness of themselves and their individual 

circumstances.  These simple agents are aggregated in various ways until the form a 

"Society of Mind," which is also the title of the book where these ideas are formulated. 

Minsky, however, did not approve of emergent behavior – did not believe it applied 

to software and to artificial intelligence research.  His society of mind relied upon 

controllers – and to the extent that it did so, implicitly presumed, in those controllers, 

the very intelligence that he was trying to model with the aggregate society.  Software 

developers attempting to follow object thinking principles find it extremely difficult 

to avoid the notion of control and sneak in implicit control in lots of subtle ways, just 

as Minsky’s critics suggested he did with his society of mind. 

The attempt to establish centralized economies and management in the pre-

collapse Soviet Union is a contrasting example of autocratic top down control.  It 

suggests that although it might be possible to construct very small-scale control oriented 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 25 of 30 

systems it does not work on a large scale.  The emerging discipline of complexity theory 

also provides insights into the limitations of control in large systems. 

These two counter-examples provide the basis for the metaphor that objects are 

coordinated as if they were ants and no object attempts to assume the role of autocrat 

controlling the behavior of other objects. 

  

Inheritance and Responsibility 
 

Inheritance - humans naturally aggregate similar things into sets (or classes).  

Another ‘natural’ kind of thinking is to create taxonomies – hierarchical relationships 

among the sets.  The most common example of this kind of thinking is Linneaus’ 

taxonomy of flora and fauna and the subsets of that taxonomy that are general common 

knowledge.  Fido is a dog (example of aggregation and the subsequent identification of a 

set).  The set of Dog is a subset of  ‘Canine,’ which is a subset of ‘Mammal,’ which is a 

subset of ‘Animal’.  (The example taxonomy is neither complete nor is it intended to be 

accurate; merely illustrative.)  We could also say that a dog is-a-kind-of canine which is-

a-kind-of mammal which is a-kind-of an animal.  Taxonomies are tree structures. 

Another kind of tree structure – one that actually employs the term – is a 

genealogical chart, a “family tree.”  Because both the taxonomy and the genealogy chart 

use the same structure, a hierarchical tree, they have become a kind of conflated 

metaphor. 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 26 of 30 

The terms “parent” and “child,” for example, are clearly appropriate for 

genealogy but are somewhat suspect when applied in the context of a Linnean hierarchy.  

Nevertheless, it is common to speak of the super / sub set relationship in terms of 

“parents” and “children.”  A super class is “Parent” and a subclass is “Child.”  From here 

it is but a short step to talk about Children “inheriting” from Parents. 

At this point the metaphor can be helpful or potentially misleading depending on 

how it is used. 

According to the presuppositions of the object paradigm a child class is a 

behavioral extension of the parent.  A dog has all the behavior of a mammal plus some 

additional behavior that is specific to dogs. If we say that a dog inherits the behaviors of a 

mammal and mean by that statement that a dog be asked to do anything that a mammal 

can do we are using the metaphor properly. 

Too often, however, the metaphor is used to assert that the child class inherits the 

internals of the parent class - an allusion to the fact that biological organisms inherit the 

DNA structures of their parents.  This is a poor and potentially misleading use of the 

metaphor. 

Behavior is the abstraction that we use to differentiate among objects and should 

be the only criteria that we use to establish our taxonomy.  Using any other criteria will 

make our taxonomy more complicated at minimum and erroneous at worse.  In the real 

world, errors like racism and sexism can be seen as characteristic-based rather than 

behavior-based taxonomies: with the obvious negative consequences. 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 27 of 30 

In the context of software objects, creating taxonomies based on internal structure 

(e.g. attributes or operations) causes problems in numerous ways.  One example is the 

need to create new classes of objects like “Customer” just because it has different 

characteristics in some contexts than in others (a credit rating, perhaps).  It can also lead 

to an apparent need for multiple lines of “inheritance” when an object has characteristics 

that are part of the structure of two or more potential parent objects. 

The desire for a child class to inherit internals of its parent classes can be better 

accommodated if we change the notion of inheritance from DNA to assets.  It has been 

noted that an object has access to whatever resources it needs to fulfill its behavioral 

expectations.  If we say that child classes have access to the resources of their parents via 

inheritance, i.e., by virtue of the parent-child relationship, then our use of inheritance 

remains consistent with the object paradigm. 

Responsibility - we know an object by what it does, what services it can provide.  

That is to say we know objects by their behaviors.  We are not interested, of course, in 

just any old behavior.  We have specific expectations of our objects and brook little 

deviation from those expectations.  Because we expect objects to exhibit certain specific 

behaviors we tend to hold them accountable for those behaviors.  We obligate them to 

perform as expected.  We make them ‘responsible’ for providing those behaviors, on 

demand, as services. 

An enumeration of an object’s behavior can therefore be considered a listing of 

the object’s “responsibilities.”  Using the metaphor responsibility implies several things 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 28 of 30 

about the object: consistency or contractual obligation, and self-control are two important 

examples. 

If an object states that it is capable of providing a given service it should perform 

that service in all circumstances and the results should be consistent.  If an integer object 

says, “I can add myself to any integer you provide and return to you the resulting 

integer,” it would be very irresponsible if sometimes it returned a floating-point number, 

or worse an integer that was other than the one representing the summing process. 

Responsibility implies that an object must assume control of itself.  It must be 

capable of assuming responsibility for its own maintenance, for notifying others of 

internal changes that they might need to be aware of, making sure it is persistent if it 

needs to be, protecting its own integrity, and coordinating its use by potentially multiple 

clients.  Just as it is improper for one object to assume a role as controller or manipulator 

of another, it is improper for an object to fail to assume responsibilities that makes the 

need for external control unnecessary. 

The notion of self-responsibility will play an important role in how we decide to 

allocate behaviors across a collection of objects.  

 

Thinking Like an Object 
 

Metaphors like those just introduced should shape our thinking about objects and 

about software constructed from those objects.  Internalizing these metaphors and the 

philosophical presuppositions stated in earlier chapters allow you to start "thinking like 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 29 of 30 

an object."  Until you are able to do so and, more importantly, until you can extend them 

into new areas, you will fail to realize the full potential of objects.  In large part the 

internalization process will occur over time and with experience.  It is possible to adopt 

certain techniques and utilize certain models to enforce the practice while you are gaining 

experience.  Later portions of this book will explore and discuss some of those models. 

Most of the models discussed will bear a striking surface similarity to models 

constructed using classical software modeling techniques.  Syntactically the variation 

between many object and classical models is minimal.  It is the semantic content - 

deriving from how we accomplish our analysis and decomposition of our domain, of the 

models that will vary. 

Because the models are so similar in syntactic structure it will be very easy to 

revert to old habits, to use the new models in old ways.  A partial defense against this 

tendency is the adoption of a new vocabulary.  In the next chapter we will present a 

vocabulary that reflects both the philosophy introduced earlier and which is consistent 

with the metaphors presented in this chapter.  Whenever the vocabulary definitions seen 

strange or unduly restrictive – remember the philosophy and metaphor that inspired them. 

 



Object Thinking, David West Chapter 4 

 

 

Microsoft Press CONDFIDENTIAL 10/16/2016 9:28 AM  Page 30 of 30 

 

                                                
1   Beck, Kent.  Test Driven Development By Example.  Boston: Addison-Wesley.  2003. ISBN 0-

321-14653-0. 

2  There are, however, patterns; diagrams suggesting proven ways that you can construct a family 

of similar artifacts, houses for example.  This topic will be looked at in more detail in a later chapter. 

 

4  OK, only subjectively. 

5  Observed, but highly improper behavior. 


