
Object Thinking, David West Chapter 2

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 1 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

2

Philosophical Context

The first question asked, more often than not, when embarking upon a new development project

is, “what language will be used for implementation?”

This is very unfortunate. Whatever the answer, it is almost always made for the wrong reasons.

Even worse, it is made for reasons that are never articulated and therefore never subject to reasoned

judgment.

Common reasons (not necessarily expressed out loud) for adopting a programming language

include: (in no particular order)

· Loyalty, “we are a Microsoft shop, we use Visual Basic (or, today, C#).”

· Bandwagon, “everyone is doing Java.”

· Economics, “Java programmers are a dime-a-dozen and completely interchangeable – we lose one

we can find a replacement easily.”

Object Thinking, David West Chapter 2

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 2 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

· Culture, “you can’t do telecom / real-time / embedded applications in anything except C++.”

· Resume, “all the job ads ask for C# experience, so I had better get some exposure.”

· Inertia, “I wrote my first program in COBOL, you can do anything you want in COBOL, so COBOL

is the right language for this project. And, it makes it easier for me to manage.”

Given that all programming languages are ultimately equivalent (“anything you can do, I can do

also”), are there any legitimate reasons for selecting one language over another? I would suggest that

there are two reasons, one major and one minor.

The major reason for choosing an implementation language is the degree to which the

philosophical assumptions, and the expressed intentions of the language designers for their language, are

consistent with the way the development team thinks and the problems they are thinking about. If you

think in formulas then FORTRAN is your language. If reports and accounts dominate your thoughts,

COBOL can’t be beat. Think like a machine, Assembler or C will allow you to directly express your

thoughts. And if you think like an object? I will defer an answer for now.

The minor reason: if, and only if, performance mandates cannot be satisfied with effective

design, it may be appropriate to select a language that provides more direct access to and control of

hardware.

davidwest� 7/30/2003 12:10 PM
Deleted: An important
davidwest� 7/30/2003 12:10 PM
Deleted: criterion
davidwest� 7/30/2003 12:10 PM
Deleted: : are the
davidwest� 7/30/2003 1:40 PM
Deleted: ?
davidwest� 7/30/2003 4:27 PM
Deleted: If the answer is yes, then the
language is likely to be more naturally
expressive and there will be less need to
contort language expressions so that they
implement the design ideas.

Object Thinking, David West Chapter 2

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 3 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

Developers, especially programmers, may be quite surprised at the assertion that philosophy

plays the most critical role in language selection. They may be surprised that philosophy played any

part in the design of programming languages in the first place. Observation of the debates about

language that have occurred the past thirty years, and especially the debates about which languages are

or are not object oriented, makes it clear that something other than syntax and benchmark results

accounts for the fervor and acrimony exhibited by the debaters. This point can be illustrated with a short

foray into the history of three languages of particular interest to object thinkers: Simula, C++ and

Smalltalk.

Philosophy Made Manifest – Dueling Languages
All of the quotations regarding Simula, Smalltalk, and C++ languages in this section are taken from

the respective chapters in ACM History of Programming Languages, ACM Press, 1978, Richard

Wexelblat (ed.) or History of Programming Languages II, Addison-Wesley,1996, Thomas J. Bergin

Jr. (ed.).

Computers – actually the engineering behind the construction of various hardware devices – and

mathematics are the binary stars around which the world of computer science has revolved for more than

fifty years. Programming once was a matter of re-wiring. It was a decade (circa 1960) before machine

level problems were solved to an extent that developers could turn their attention to larger issues of

program design. Another decade (crica 1970) elapsed before efforts to formalize (structured

programming, structured design, structured analysis) the development of applications and systems were

davidwest� 7/30/2003 4:33 PM
Deleted: Nevertheless, it is philosophy that
explains the acrimony of debates over
language and, almost always, the ultimate
selection of a language by project teams or
organizations.
davidwest� 7/30/2003 4:35 PM
Deleted: .

davidwest� 7/30/2003 4:37 PM
Deleted: 1

davidwest� 7/30/2003 4:38 PM
Deleted: we
davidwest� 7/30/2003 4:39 PM
Deleted: our
davidwest� 7/30/2003 4:39 PM
Deleted: we worked on
davidwest� 7/30/2003 4:40 PM
Deleted: analysis

Object Thinking, David West Chapter 2

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 4 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

widely deployed. Significant attention is now being paid to the “soft” issues of usability, human-

machine interaction, and even culture.

Despite these advances, whenever a new idea is introduced in computer science it receives little

attention until it has been made concrete and explicit – frequently as a new programming language.

Debates about ideas are then transformed into debates of the relative merits of the artifact languages.

Arguments about design, analysis, method and process inevitably follow, but those discussions are more

often grounded in the programming language artifacts than in the original ideas. In this process, the

original ideas become secondary if they are not lost entirely.

This has certainly been true in the case of the “object idea” and the programming languages that

lay claim to that idea. The most vituperative debates in the object community tended to center on

questions of programming language. The overt focus of those debates was on programming language

features and technical benchmarks. But it was the emotions induced by covert (not consciously hidden,

merely assumed and unspoken) philosophical positions that accounted for the intensity and the hostility

evident in those debates.

Behind the Quotes

Alan Kay, Kristen Nygaard, and Bjarne Stroustrup
Each of these individuals is known for designing and promoting a particular programming

language (which we will be discussing shortly).

davidwest� 7/30/2003 4:40 PM
Deleted: employing computers and programs

davidwest� 7/30/2003 4:41 PM
Deleted: Each individual is also known for
many other contributions to the world of
software development and computer science.

Object Thinking, David West Chapter 2

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 5 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

Alan Kay designed, and Dan Ingalls implemented, the Smalltalk programming language while

working at the Xerox sponsored Palo Alto Research Center (PARC), during the period when PARC was

a premier center of exciting and important innovation in the field of computing . After leaving PARC,

they both worked at Apple Computer where they reinvented Smalltalk and called it Squeak. Squeak

underwent further development when both men moved to Walt Disney Corporation. Today, they are

independent developers focused on educational applications of the Squeak language and its multimedia

capabilities.2

Dr. Kay (he received his Ph.D. in computer science from the University of Utah) developed the

idea of a “Dynabook” – a laptop, network enabled, computer with the Smalltalk environment – while at

PARC. Arguably, the Pad Computer version of Microsoft’s Windows operating system would be – if

coupled with Smalltalk / Squeak – a pretty close approximation of his ideas.

Kay’s biggest contribution was changing the way industry and users think of computers. Before

Kay, computers were impersonal tyrants that required you to speak their language and limited their

interaction to text-based communications. Kay personalized the machine expanded the means of

interaction to include graphics, point-and-click, and multimedia using a language designed for human

communication. The PC on your desktop reflects more of Kay’s ideas than most people realize.

Kristen Nygaard developed, with Ole Johan-Dahl, the Simula programming language -

introducing the concepts upon which all later object-oriented programming languages are built: Objects,

classes, inheritance, virtual quantities and multi-threaded program execution. He was also a social

davidwest� 7/30/2003 4:57 PM
Deleted: s rather than machines

Object Thinking, David West Chapter 2

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 6 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

activist greatly concerned with the use of information technology and spent a good part of his career

concerned with the social impact of computer technology. His work became the foundation of what

today is called "the Scandinavian School in System Development", closely linked to the field of

Participatory Design – design by and on behalf of real users XP and its practice of having an on-site

customer is reflective participatory design.

He has received the Norbert Weiner prize from Computer Professionals for Social Responsibility

(CPSR) for responsibility in social and professional work; the Rosing Prize, awarded by the Norwegian

Data Association for exceptional professional achievements; the John von Neumann Medal by IEEE

(Institute of Electrical and Electronic Engineers); the A. M. Turing Award by the ACM (Association of

Computing Machinery) for 2001; and, in August 2000 he was made Commander of the Order of Saint

Olav by the King of Norway.

Bjarne Stroustrup designed and implemented C++ while at A.T. & T. where problems of high

speed switching systems for large scale networks provided the context for this thinking about

programming and the values that should be incorporated into a programming language. He pioneered the

use of object-oriented and generic programming techniques in application areas where efficiency is a

premium, e.g. switching systems, simulation, graphics, embedded systems, and scientific computation.

The C++ Programming Language (Addison-Wesley, 1985, 1991, 1997, and "special" edition in 2000)

has been translated into 14 languages..

davidwest� 7/30/2003 4:58 PM
Deleted: .

davidwest� 7/30/2003 5:01 PM
Deleted: A later book, In addition to his five
books, Stroustrup has published more than
sixty academic and more popular papers

Object Thinking, David West Chapter 2

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 7 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

Dr. Stroustrup (Ph. D. computer science from Cambridge University) is an ACM Fellow and has

received that society’s Grace Murray Hopper award for his work in C++. He is an ATT Bell Labs

Research Fellow and an ATT Fellow and currently holds the position of Professor at Texas A&M

University.

Until the appearance of Java and C#, Smalltalk and C++ were the prime contenders for the hearts

and minds of object developers. The intensity of argument between advocates of each language is

legendary. Both sides tended to see Java as an interloper and tended to criticize those aspects of Java

that reflect their more traditional nemesis. Disagreement between Smalltalkers and C++ers gains added

interest from the fact that both claim to be the direct heirs of another, older, language, Simula.

Simula

Simula did not start as a programming language, and during all of its

development stages, reasoning outside traditional programming played an

important part in its design.

From the very outset Simula was regarded as a system description

language... [emphasis Nygaard’s]

Object Thinking, David West Chapter 2

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 8 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

Simula 67, however, was as a general purpose programming language. Was the original purpose

abandoned or did Simula have a “dual personality?” The latter option is correct. This will be important

when we examine what Smalltalk and C++ chose to borrow from Simula.

The concept of Simula began with an analysis of operations research and the kind of complex

systems being modeled and analyzed in that domain. The first goal was to develop a “useful and

consistent set of concepts” for modeling the “structure and interaction” of elements in complex systems.

 The initial objectives for the language were:

1. The language should be built around a general mathematical

structure with few basic concepts. This structure should furnish the

operations research worker with a standardized approach in his

description so that he can easily define and describe the various

components of the system in terms of these concepts.

2. It should be unifying, pointing out similarities and differences

between various kinds of network systems.

3. It should be directing, and force the operations research worker to

consider all aspects of the network.

4. It should be general and allow the description of very wide classes

of network systems and other systems which may be analyzed by simulation,

and should for this purpose contain as a general algebraic dynamic

language, as for example ALGOL and FORTRAN.

Object Thinking, David West Chapter 2

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 9 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

5. It should be easy to read and to print, and should be suitable for

communication between scientist’s studying networks

6. It should be problem oriented and not computer oriented, even if

this implies an appreciable increase in the amount of work which has to be

done by the computer.

Perhaps the most dramatic of these objectives was number six which is at odds with typical

objectives for programming languages: efficiency, speed of execution, smallest possible executable

“footprint,” and more intuitive and useful representations for computer primitives (memory addresses,

op-codes, etc.). Subsequent statements of object for Simula significantly modified this original goal.

One reason for the change was market driven, “the success of SIMULA would, regardless of our

insistence on the importance of problem orientation, to a large extent depend on its compile and run-

time efficiency as a programming language.” (pp. 447) The other reason for the change was as a

perceived lack of conflict between problem orientation and computer orientation. Simula’s developers

discovered that, “good system description capabilities seem to result in as a more simple and logical

implementation,” (pp.447) thereby reducing the load on the computer’s capabilities.

The focus on problem description, and the resulting simplification of the implementation,

promoted by Simula’s developers is paralleled in a paper by David Parnas, written in 19723. Parnas’

davidwest� 7/30/2003 5:02 PM
Deleted: written nine year s later
davidwest� 7/30/2003 5:04 PM
Deleted: ,
davidwest� 7/30/2003 5:04 PM
Deleted: called “On Decomposition.”

Object Thinking, David West Chapter 2

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 10 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

paper examined two conceptual abstractions for decomposing complex systems for the purposes of

developing software. One was top-down functional decomposition, the approach gaining widespread

acceptance under the label “structured design.” Functional decomposition is based on an attempt to

model the performance of the computer and software and to translate the requirements of the domain

problem into those computer-based constructs.

Parnas offered an alternative approach called “design decision hiding,” modeling and

decomposing the problem or the problem domain without consideration of how the component parts of

that domain or problem would be implemented. He was able to show that his alternative led to simpler,

easier to read, easier to maintain, and more composable software modules than functional

decomposition. Unfortunately his advice was essentially ignored as the juggernaut of structured

development came to dominate, (at least officially), the manner in which software was conceived and

implemented.

Decomposition into sub-units is necessary before developers can understand, model, and build

software components. Both Parnas and the SIMULA team point to an important principle: if

decomposition is based on a “natural” partitioning of the domain the resultant models and software

components will be significantly simpler to implement and will, almost as a side effect, promote other

objectives like operational efficiency and communicational elegance. If, instead, decomposition is

based on “artificial,” i.e. computer derived, abstractions like memory structures, operations, or functions

(as a package of operations) the opposite results will accrue.

davidwest� 7/30/2003 5:08 PM
Deleted: Both Parnas and the SIMULA team
point to an important principle.
davidwest� 7/30/2003 5:08 PM
Deleted: we
davidwest� 7/30/2003 5:09 PM
Deleted: I
davidwest� 7/30/2003 5:09 PM
Deleted: that
davidwest� 7/30/2003 5:09 PM
Deleted: as

Object Thinking, David West Chapter 2

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 11 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

A corollary of this principle is that design trumps direct expressiveness in a computing language.

 Performance, the minor and restricted reason for selecting a programming language noted above is as

much or more a matter of proper design as it is of direct manipulation of hardware and virtual machine

components. Object thinking leads to better designs that reduce the demand placed on the machine so

raw efficiency and speed are far less critical than presumed by most developers.

 As the SIMULA team expanded their understanding of the simulation problem domain, and the

kinds of systems to be simulated, they identified needs for more generalized and inter-related

components. These components had to be implemented and implementation required adding

sophistication to the language, resulting in the ideas of objects, classes of objects, data and

implementation hiding, virtual procedures, and inheritance.

The legacy of Simula is twofold. First, and most important from the perspective of object

thinking, it provided an orientation (a philosophy) of giving primary importance to understanding and

modeling the problem domain. This philosophy led the quest for an elegant and powerful language that

would allow direct mapping of components in a domain to the modules employed in the computer.

Second, a number of original concepts, with appropriate vocabulary (object, class, inheritance), and

some important implementation tricks like abstract data types and compiler generated structures were

invented or advanced as the language developed.

What use did the inheritors of SIMULA make of this legacy?

davidwest� 7/30/2003 5:10 PM
Deleted: Remember the minor reason

davidwest� 7/30/2003 5:12 PM
Deleted: Nygaard’s and Parnas’ observations
are consistent with that assertion.

Object Thinking, David West Chapter Two - 12

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 12 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

C++

Bjarne Stroustroup was motivated by the desire to create “a better C.” The C programming

language is noted for its power and conformity to machine architecture; which assures that C programs

are maximally efficient in terms of machine resources. This same power, however, made its misuse

almost inevitable. Bugs were easy to create and difficult to track down. Too many C programmers

lacked the discipline necessary to properly utilize the language. In Simula, Stroustroup saw a model for

introducing discipline to the C language.

C++ was designed to provide Simula’s facilities for program

organization together with C’s efficiency and flexibility for systems

programming. ... While a modest amount of innovation did emerge over the

years, efficiency and flexibility have been maintained without compromise.

Stroustroup was concerned with creating a “suitable tool” for projects such as the writing of, “a

significant simulator, an operating system, and similar systems programming tasks.” His focus was on

the machine - systems level programming - and on the program. Even though he found Simula to be an

excellent tool for describing systems and directly mapping application concepts into language

constructs, he seemed to be more concerned with performance features of Simula than its descriptive

capabilities.

Simula’s class based type system was a huge plus but its run time performance was “hopeless:”

Object Thinking, David West Chapter Two - 13

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 13 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

The poor runtime characteristics were a function of the language and

its implementation ... The overhead problems were fundamental to Simula

and could not be remedied. The cost arose from several language features

and their interactions: run-time type checking, guaranteed initialization of

variables, concurrency support, and garbage collection ...

Simula was conceived to make it easier to describe natural systems and simulate them in

software even if that meant the “computer had to do more work.” The inefficiencies noted by

Stroustroup were indeed intrinsic to the language and the paradigm created by Simula. Stroustroup

essentially rejected the Simula philosophy because his problem domain was the computer itself and

performance was the primary goal.

C with Classes [precursor to C++] was explicitly designed to allow

better organization of programs; ‘computation’ was considered a problem

solved by C. I was very concerned that improved program structure was

not achieved at the expense of run-time overhead compared to C. The

explicit aim was to match C in terms of run-time, code compactness, and

data compactness. To wit: someone once demonstrated a three percent

systematic decrease in overall run-time efficiency compared with C. This

was considered unacceptable and the overhead was promptly removed.

C++ maintained the goal of adding program structure without a loss of performance. The

constant measure of the language was the machine, either the physical computer platform or the virtual

Object Thinking, David West Chapter Two - 14

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 14 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

machine - the program. This constant focus on machine performance limited what could be borrowed

from Simula - most importantly Simula’s goal of being a general systems description language.

Although the claim is made that C++ is a general purpose programming language, that assertion

should be modified. C++ is a general-purpose language for describing and efficiently implementing

programs that model software implementation constructs (e.g. control structures, data structures,

algorithms), virtual machines, or hardware elements.

The focus on the machine is C++’s greatest strength and its greatest weakness. Stroustroup

explicitly rejected the philosophy and values behind Simula and merely borrowed some of its

implementation tricks, thereby created a language that inhibits the direct expression of application

designs in any domain except that of the computer itself. The “simple and logical implementations”

observed by Nygaard and advocated by Parnas of non-computer problem domain designs cannot be

expressed in C++ without some degree of compromise with those principles upon which the language is

predicated.

Smalltalk

Philosophically, Smalltalk’s objects have much in common with the

monads of Leibniz and the notions of 20th century physics and biology. Its

way of making objects is quite Platonic in that some of them act as

idealizations of concepts - Ideas - from which manifestations can be

created. That the Ideas are themselves manifestations (of the Idea-Idea)

and that the Idea-Idea is a-kind-of Manifestation-Idea - which is a kind-of-

Object Thinking, David West Chapter Two - 15

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 15 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

itself, so that the system is completely self-describing - would have been

appreciated by Plato as an extremely practical joke.

Kay describes Smalltalk as a “crystallization of style” language, one that is an expression of, “the

insight that everything we can describe can be represented by a single kind of behavioral building block

... “ - in essence an object. From the outset, Kay is characterizing Smalltalk as deriving from the same

goals as motivated Simula - a desire to have a simple and expressive language for describing and

representing (simulating) naturally occurring complex systems.

Object-oriented design is a successful attempt to qualitatively improve

the efficiency of modeling the ever more complex dynamic systems and user

relationships made possible by the silicon explosion.

Note the absence of any reference to computer or program efficiency or organization. When Kay

first encountered Simula and its objects and object manipulation constructs he experience a kind of

“epiphany” as, in Kay’s mind, ideas from mathematics, philosophy, and biology came together.

Bob Barton had said ... ‘The basic principle of recursive design is to

make the parts have the same power as the whole.’ For the first time I

though of the whole as the entire computer and wondered why anyone

would want to divide it up into weaker things called data structures and

procedures. Why not divide it up into little computers ...I recalled the

monads of Leibniz, the ‘dividing nature at its joints’ discourse of Plato, and

other attempts to parse complexity. ... It is not too much of an exaggeration

to say that most of my ideas from then on took their roots from Simula - but

Object Thinking, David West Chapter Two - 16

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 16 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

not as an attempt to improve it. It was the promise of an entirely new way

to structure computations that struck my fancy.

Another major stream of influences that shaped the development of Smalltalk was education and

cognitive theories - ideas about how people (often children) think or can be encouraged to develop

thinking skills. The computer, for Kay, promised a potential vehicle for supporting and promoting

thinking, the foundation for an alternative advocated by Marvin Minsky.

It was clear that education and learning had to be rethought in the

light of 20th century cognitive psychology and how good thinkers really

think. Computing enters as a new representation system with new and

useful metaphors for dealing with complexity, especially of systems.

Although Kay’s account of the origins of Smalltalk addresses issues of machine efficiency,

(almost always in the context of making performance conform to human user expectations for dialog),

and compactness, (an over-riding goal was to create a Dynabook or at least a notebook computer), they

are overwhelmed by other goals. Expressiveness in describing complex systems, support for education

and dialogic interaction between children and machines, and even a search for beauty in programming

languages are important examples.

One part of the perceived beauty of mathematics has to do with a

wondrous synergy between parsimony, generality, enlightenment, and

finesse. ... When we turn to the various languages for specifying

computations we find many to be general and few to be parsimonious. For

example, we can define universal machine languages in just a few

Object Thinking, David West Chapter Two - 17

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 17 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

instructions that can specify anything that can be computed. But most of

those we would not call beautiful, in part because the amount and kind of

code that has to be written to do anything interesting is so contrived and

turgid. ...

 A fertilized egg that can transform itself into the myriad of

specializations needed to make a complex organism has parsimony,

generality, enlightenment, and finesse - in short, beauty ... Nature is

wonderful at both elegance and practicality - the cell membrane is partly

there to allow evolutionary kludges to do their necessary work and still be

able to act as components by presenting a uniform interface to the world.

 - Kay 19xx

Alan Kay clearly was not interested so much on what went on inside the machine as how the

existence of the machine redefined the act of communication between person and machine. He saw the

personal computer as a potentially liberating and creative device, but its potential impact was inhibited

by the mode of communication. He saw that a better language not programming language was required.

There are two lessons and one assertion to be derived from our brief historical retrospective:

· Lesson: the essential differences among programming languages are those that reflect philosophical

ideals and values. Those values and ideas, in turn, determine the degree to which a language

naturally and simple expresses design concepts without resorting to “contrived and turgid” code.

· Lesson: if you think about design using an implementation language – as programmers and

especially Extreme Programmers are wont to do – your designing will be enhanced or severely

restricted by that language.

davidwest� 7/30/2003 5:14 PM
Deleted: true

Object Thinking, David West Chapter Two - 18

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 18 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

· Assertion: If your development project involves modeling, designing, and solving problems in the

domain defined by the boundaries of the computer itself (e.g., operating systems, device drivers,

network infrastructure) you will best be served by languages like C++, C#, and Java. If, like the vast

majority of software developers, you are interested in modeling, designing, and solving problems in

an application space you will be far better served to use languages like Smalltalk, Lisp, Fortran,

COBOL, and Visual Basic. (With Smalltalk and Visual Basic being generally applicable to a wider

variety of application domains.)

Languages are not the only implementation decision that affects design in a similar way. The

decision to employ a relational database is an implementation decision with the same kind of

implications as selecting a language. Consider the following example.

A customer in the real world may use many different addresses for different reasons. A domain

reflective object model might have the partial diagrammatic representation in figure 2.1 (a). Address is a

collection – a recurring field – and therefore, according to the dictates of relational database design4,

cannot be an attribute of Customer. In fact we have to create two entities with a relationship between

them as shown in figure 2.1 (b).

F02xx01a
Figure 2.1a

Domain reflective Customer Model (partial)

F02xx01b
Figure 2.1b

uses

M:M

Object Thinking, David West Chapter Two - 19

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 19 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

Relational Customer Model (partial)

In the store I might ask a customer, “where would you your purchase delivered?” The customer

would think a bit and give me back an address. But in the relational example I cannot ask the customer

this question because the customer does not know the answer. Instead, I have to ask the customer for his

customer number and then ask the collection of addresses in the Address relation, “which of you belongs

to customer ‘custNo’ and also has the type value ‘delivery’?” The implementation code gets even more

“contrived and turgid” when I attempt to account for the fact that the customer may want to use different

delivery addresses at different times or for different situations.

How does the human customer select an appropriate address. We do not know, and in one sense

we do not care because the method is inside her encapsulation barrier, but we might imagine a simple

mechanism so that we can model it. We will presume that the customer has an “address selection rule”

that contains variables for time of year, state of special circumstances, and similar

 Analogous design problems occur when you use strongly typed languages (the real world is

pretty fuzzy when it comes to classification) or other constructs that effectively represent the computer

but not the application domain.

Programming languages are concrete manifestations of a set of values, ideas, and goals;

themselves but parts of, or reflections of, a more inclusive world-view or philosophical context. Given

that most of computing and software development emerged from the western world5, a common world-

view or philosophical context might be assumed.

Object Thinking, David West Chapter Two - 20

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 20 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

This is clearly not the case.

Formalism and Hermeneutics
For philosophers the eighteenth century is considered the “Age of Enlightenment,” or the “Age

of Reason.” Other descriptive labels for the era include the “Age of Science,” or the beginning of the

“Age of the Machine.” The Universe was considered a kind of complicated mechanism that operated

according to discoverable laws. Once understood these laws could be manipulated to bend the world to

Man’s desire. Physicists, chemists, and engineers daily demonstrated the validity of this worldview with

consistently more clever and powerful devices.

Writers such as Descartes, Hobbes, and Leibniz provided the philosophical ground that explained

the success of science and extended the mechanical metaphor to include human thought. For these

thinkers the Universe was comprised of a set of basic elements. Literally, the Periodic Table of

Elements in the case of chemistry, properties such as mass for the physicists, and mental tokens in the

case of human thought. These basic elements could be combined and transformed according to some

finite set of unambiguous rules: the “laws of nature” in the case of the physical sciences, or classical

logic in the case of human thought.

Descartes, Hobbes, and Leibniz are likely to be familiar to most readers as rationalist philosophers.

Perhaps less well known is the fact that all three were convinced that human thought could be

simulated by a machine – a foundation idea behind classical artificial intelligence research in the

1970’s. All three built or attempted to build mechanical thinking / calculating devices. Leibniz was

so entranced with binary arithmetic (he invented aspects of binary logic) that it influenced his

Object Thinking, David West Chapter Two - 21

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 21 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

theology, “the void is zero and God is one and from then all things are derived,” and prompted an

intense interest in the Chinese I Ching, (Book of Changes), which has a binary foundation.

This tradition of thought, this worldview or paradigm, has been labeled, “formalism.” Other

names with various nuances of meaning include “rationalism,” “determinism,” and “mechanism.”

Central to this paradigm are notions of centralized control, hierarchy, predictability, and provability (as

in math or logic). If one could discover the tokens and the manipulation rules that governed the

Universe you could specify a syntax that would capture all possible semantics. You could even build a

machine capable of human thought by embodying that syntax in its construction. It is not a coincidence

that all three philosophers, (Descartes, Leibniz, and Hobbes), attempted to construct some form of

thinking machine.

As science continued to advance, other philosophers and theoreticians refined the formalist

tradition. Russell and Whitehead are stellar examples. In the world of computing, Babbage, Turing, and

von Neumann assured that computer science evolved in conformance with formalist worldviews. In

some ways, the ultimate example of formalism in computer science is classical Artificial Intelligence as

seen in the work of Newell, Simon, and Minsky.

Formalist philosophy has shaped western industrial culture so extensively that even cultural

values reflect that philosophy. For example, scientific is good, rational is good, and being objective is

good. In both metaphor (“our team is functioning like a well oiled machine”) and ideals (scientific

management, computer science, software engineering) western culture-at-large ubiquitously expresses

the value system derived from formalist philosophy.

Object Thinking, David West Chapter Two - 22

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 22 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

Computer science is clearly a formalist endeavor. Its roots are mathematics and electrical

engineering. Its foundation concepts include data (the tokens), data structures (combination rules), and

algorithms (transformation and manipulation rules). Behind everything else is the foundation of discrete

math and the predicate calculus. Structured programming, structured analysis and design, information

modeling, and relational database theory are all prime examples of formalist thinking. These are the

things that we teach in every computer science curriculum.

As a formalist the computer scientist expects order and logic. The ‘goodness” of a program is

directly proportional to degree to which it can be formally described and formally manipulated. Proof –

as in mathematical or logical proof – of correctness for a piece of software is an ultimate objective. All

that is bad in software arises from deviations from formal descriptions using precisely defined tokens

and syntactic rules. “Art” has no place in a program – in fact there is no such thing as art. Art is nothing

more than formalism that has yet to be discovered and explicated.

Countering the juggernaut of formalism is a minority worldview of equal historical standing

even though it does not share equal awareness or popularity. Variously known as “hermeneutics,”

“constructivism,” “interpretationalism,” and most recently “postmodernism” this tradition has

consistently challenged almost everything advanced by the formalists.

Hermeneutics, strictly speaking is the study of interpretation, originally the interpretation of

texts. The term is used in religious studies where the meaning of sacred texts, written in archaic

Object Thinking, David West Chapter Two - 23

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 23 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

languages and linguistic forms, must be interpreted to a contemporary audience. Husserl, Heidegger,

Gadamer, Dilthey, and Vygotsky are among the best known advocates of hermeneutic philosophy.

Hermeneutics (er men u tiks) is derived from the name of the Greek god Hermes – the messenger or

god of communication. It is a difficult name and does not flow easily off the tongue like

“formalism.” Unfortunately there is no comfortable alternative term to use. Most of the

philosophers most closely associated with this school of thought – excepting Heidegger – are

probably unknown to most readers. Unfortunately, there is not space to fully explicate the ideas of

these individuals in this book. It is strongly suggested, however, that your education – and your

education as a software developer in particular – will not be complete without a reasonably thorough

understanding of their ideas.

The ideas of the hermeneutic philosophers are frequently illustrated with examples from

linguistics, but hermeneutic principles are not limited to that domain. For example, words (the tokens of

thought according to formalists) do not have clear and unambiguous meaning. The meaning (semantics)

of a word is negotiated, determined by those using it, at the time of its use. Semantics are ephemeral

and emergent from the process of communication. Therefore, the possibility that any formal syntax, no

matter how comprehensive or sophisticated, is capable of capturing the semantics of the natural world is

denied.

The hermeneutic conception of the natural world claims a fundamental non-determinism. The

world is deemed to be chaotic - at minimum. More often they assert that the world is self-organizing,

adaptive, and evolutionary with emergent properties. Our understanding of the world, and hence the

nature of systems we build to interact with that world, are characterized by multiple perspectives and

davidwest
Comment [1]: This is a placeholder for
properly formatted phonetic spelling of the
word. I am sure the Word can do this, but did
not have time to discover how.

Object Thinking, David West Chapter Two - 24

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 24 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

constant change in interpretation. Contemporary exemplars of this paradigm are Gell-Mann, Kauffman,

Langton, Holland, Prigogine, Wolfram, Maturana, and Varela.

Murray Gell-Mann, Stuart Kauffman, Christopher Langton, and John Holland are closely associated

with the Santa Fe Institute, the study of complexity and of artificial life. This new discipline

challenges many of the formalist assumptions underpinning classical science – suggesting that

significant portions of the real world must be understood using an alternative paradigm based on

self-organization, emergent properties, and non-determinism. Ilya Prigogine is a Nobel prize

winning physicist (as is Gell-Mann) whose work laid many of the foundations for the study of

emergent and chaotic physical systems. Steven Wolfram, developer of Mathematica and expert in

cellular-automata has recently published A New Kind of Science, that suggests all we know can be

best explained in terms of cellular-automata and emergent systems. Humberto Maturana and

Francisco Varela are proponents of a “New Biology” consistent with complex systems theory and

collaborators with Terry Winograd of a hermeneutic theory of design strongly influenced by the

philosophy of Heidegger.

As exotic and peripheral as these ideas may seem, they have been at the heart of several debates

in the field of computer science. One of the best examples is found in the area of artificial intelligence.

The formalists represented by Newell and Simon arguing with the Dreyfus brothers and others

representing hermeneutic positions.

Allen Newell and Herbert Simon are among the leading advocates of traditional artificial

intelligence – the theory that both humans and machines are instances of “physical symbol systems.”

 Both humans and machines “thought” by manipulating tokens in a formal way (Descartes redux)

and therefore it was perfectly possible for a digital computer to “think” as well as (actually better

than) a human being. Hubert L. Dreyfus working with his brother was one of the most vocal and

visible critics of traditional AI. What Computers Can’t Do and What Computers Still Can’t Do,

Object Thinking, David West Chapter Two - 25

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 25 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

written by Hubert, present arguments based on the work of Husserl and Heidegger against the

formalist understanding of cognition.

Another example centers on the claim for ‘emergent” properties in neural networks. Emergence

is a hermeneutic concept inconsistent with the formalist idea of a rule-governed world. Arguments

about emergence were heated. The stronger the claim for emergence by neural network advocates, the

greater the opposition from formalists. Current work in cellular automata, genetic algorithms, neural

networks, and complexity theory clearly reflect hermeneutic ideas6.

Marvin Minsky is another leading advocate of traditional AI. He was vehemently against the idea of

emergent properties in systems – a view which seemed to soften in later years. His book, Society of

Mind, attempted to use object-oriented programming ideas to develop a theory of cognition that

could rely in interactions of highly modularized components without the need for emergent

phenomenon.

The hermeneutic philosopher sees a world that is unpredictable, biological and emergent rather

than mechanical and deterministic. Mathematics and logic do not capture some human-independent

truth about the world. Instead they reflect the particularistic worldview of a specific group of human

proponents. Software development is not a “scientific” nor an “engineering” task. It is an act of “reality

construction” that is political and artistic.

Formalism and hermeneutics contest each other’s basic premises – the core assumptions made

about the nature of the universe and the place of humanity within that universe. Challenges to basic

assumptions are frequently challenges to core values as well. Fundamental assumptions, and values, are

Object Thinking, David West Chapter Two - 26

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 26 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

seldom examined. Like articles of faith they are blindly defended and arguments at this level come to

resemble “religious warfare.”

As noted previously, Western culture in general is largely formalist (using the labels “rationalist”

and “scientific” rather than formalist) in its orientation. Anything challenging this position is viewed

with suspicion and antagonism. It is for this reason that the conflict between hermeneutic and formalist

worldviews frames the debate about an object paradigm.

XP is the most recent example of a series of attempts to apply hermeneutic, human-centric, and

aformal ideas to software development. Some antecedents include the “two cultures” identified by

Robert L. Glass7 and the associated debates over the role of creativity in software development; the

conflicts between "fuzzies" and "neats” in AI; and the classic debates between devotees of Smalltalk and

those of C++.

Behind the Quotes

Robert L. Glass
A prolific writer and chronicler of ideas in software development as well as a leading

practitioner, Robert L. Glass appears frequently in publications ranging from ACM Communications to

his own newsletter, The Software Practitioner. His extensive experience in the real world and the world

of academe make his insights into the conflict between “how it is done” and “how theorists think it is

done” invaluable for everyone involved in any kind of software development. One of his main themes is

that practice requires a great deal more creativity and aformalism than computer scientists, software

Object Thinking, David West Chapter Two - 27

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 27 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

engineers, and academicians are willing to acknowledge. His latest work, Facts and Fallacies of

Software Engineering, Addison-Wesley, 2003, presents in a concise and highly readable fashion many

of the critiques of formalist approaches to software development that are presented here as foundation

positions for object thinking and extreme programming.

More recently, Michael McCormick notes that:8

What XP uncovered (again) is an ancient, sociological San Andreas

Fault that runs under the software community - programming versus

software engineering (a.k.a. the scruffy hackers versus the tweedy computer

scientists). XP is only the latest eruption between opposing continents.

XP is the latest assertion of the view that people matter. XP is the latest challenger to the

dominant (and hostile) computing and software engineering culture. XP is the latest attempt to assert

that developers can do the highest quality work using purely aformal methods and tools. And XP is the

latest victim of the opprobrium of the formalists and the latest to be told that its approach is only suitable

for dealing with small non-critical problems.

To the extent that objects (our present focus) are seen as an expression of a hermeneutic point of

view they have been characterized as anti-rationalist, or at best non-rationalist, challenges to the

prevailing philosophy. It is my assertion that objects are (or are perceived to be) a reflection of

Object Thinking, David West Chapter Two - 28

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 28 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

hermeneutic philosophy. A way to test this assertion is to compare objects to other ideas about software

development that are clearly hermeneutic – i.e. postmodernism.

Postmodern Critiques

There is a controversy smoldering in the computer science world at

the intersection of two important topics: formal methods and heuristics.

The controversy, though it may sound esoteric and theoretic, is actually at

the heart of our understanding of the future practice of software

engineering.

What is meant by formal methods? Techniques, based on a

mathematical foundation, which provide for systematic approaches to

problem solution. What is meant by heuristics? Techniques that involve

trial-and-error approaches to problem solution.

It should be noted that careful reading will disclose a potential middle

ground. Formal methods, perhaps, are appropriate for solving mechanistic

and well understood problems or parts of problems; heuristics are

necessary for more complicated and creative ones.

Robert L. Glass probably would not identify himself as a postmodernist but he does provide a

good transition to a consideration of postmodern philosophy and computer science. The preceding

quotes are consistent with the contrast between formalist and hermeneutic philosophy discussed in the

Object Thinking, David West Chapter Two - 29

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 29 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

previous section. The third quote additionally suggests the superiority of heuristics over formalism

when we need to address large-scale complicated (and possibly complex) systems that involve human

beings.

Glass’s arguments in favor of heuristics and creativity in software design mirror the hermeneutic

arguments against formalism. Formal approaches simply will not work beyond a certain scale.

Formalism works “close to the computer,” is highly questionable at the level of an application, and fails

at the level of complete systems and architectures.

The work of Terry Winograd provides complementary parallel to Glass while making a more

direct link to hermeneutic philosophy. Early in his career he was a strong advocate for classical AI and

was a strong formalist. Exposure to the ideas of Humberto Maturana and Francisco Varela along with

the philosophical works of Martin Heidegger prompted his reconsideration of AI’s formalist tenets.

Winograd has turned his attention from formal modeling of the world to the issue of designing

software to be used in the real world. He characterizes design as: a conscious act, human centric,

conversational or dialogic in nature (between artifacts like software and hardware and human beings

who are users of same), creative, communicational, with social consequences, and done as a social

activity.

One of the influences on Winograd’s thinking was the work of Humberto Maturana and

Francisco Varela regarding the evolution of autopoietic (self-organizing) biological and cognitive

systems. The structural-coupling mechanism used by cells to establish cooperative complex structures,

Object Thinking, David West Chapter Two - 30

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 30 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

and eventually all the familiar forms of flora and fauna, provided one bridge to the social nature of

computer systems and their development.

Another influence was the work of Martin Heidegger – a hermeneutic philosopher. Writing with

Fernando Flores, Winograd explored the work of Heidegger and its implications for computer system

design.

One of the most important implications was the denial of “intrinsic truth or meaning” in any

artifact – whether it was a computer, a piece of software, or a simple statement in a natural language.

This claim is also central to the school of thought that has been labeled, “postmodern.” It is also one of

the core claims of all the hermeneutic philosophers. Because of this implication, the design of computer

systems must, for Winograd and other postmodernists, be refocused on the use of software and hardware

as communication devices for a particular group of people at a particular point in time.

While Winograd and Flores concentrated on Heidegger’s notion of “breakdown” and issues of

communication, Christiane Floyd and her co-authors extended the discussion to include other facets of

postmodern philosophy.9 The role of politics and power relationships in both the imposition of a

software artifact on a community of users and in the group dynamics of those charged with the creation

of the software artifact in the first place are central concerns of Floyd and her colleagues. In a similar

vein, Richard Coyne10 addresses the issue of design in a postmodern age.

The importance of all this work – beginning with Glass’s concerns about creativity and including

the postmodernists concerns with computer system design – is a clear extension of hermeneutic

Object Thinking, David West Chapter Two - 31

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 31 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

arguments against formalism. It is also the context in which objects as a software development

metaphor were coined. The first expression of “object thinking” by Alan Kay and the researchers at

Xerox PARC, were concerned, like the postmodernists, far more with people and communication issues

than they were technical computer and formalist issues.

Self consciously or not, the object community was concerned – in the 1960s and 1970s with the

exact same issues raised by the hermeneuticists in the 19th and 20th centuries and the postmodernists of

the 1990s. To an object advocate, objects are valuable because they facilitate user-computer interaction

and communication among members of development teams. Objects enhance the “art” of software

development but not necessarily the “engineering.”

Adherents to formalist ideas, including computer scientists and software engineers, dismissed

objects as irrelevant. When objects technology looked like it might make serious inroads into real world

development the formalists attacked in the same manner that they attack other critiques of formalist

approaches – for example, the creativity discussed by Robert Glass.

Simultaneous with the attack on basic philosophy, the traditionalists began to lay claim to the

“form” of objects by equating them with the “black box module.” They were also quick to adopt less

threatening innovations like abstract data types as logical extensions of traditional software engineering

theory. As a consequence the object technology that became widely adopted was the formalist recasting

of object ideas rather than the “pure” object paradigm itself.

Object Thinking, David West Chapter Two - 32

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 32 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

A similar phenomenon is evident in the “patterns movement” where many of the core

philosophical ideas of Christopher Alexander (original inspiration for the attention paid to patterns) are

being dismissed or co-opted by traditional software developers who like the form of patterns but are

uncomfortable with the more esoteric ideas.

Rejecting Mysticism
Before he wrote, A Pattern Language, Alexander published, The Timeless Way of Building. The

former book is cited by everyone in the patterns movement as an inspiration for their own efforts, but

the latter is seldom mentioned. Of course, it is in the latter book that Alexander’s mysticism is most

evident. Consider the following:

A building or town will only be alive to the extent that it is governed by

the Timeless Way. To seek the Timeless Way we must first know the

Quality Without A Name. To reach the Quality Without A Name we must

then build a living pattern language as a Gate. Once we have built the

Gate, we can pass through it to the practice of the Timeless Way. An yet

the Timeless Way is not complete, and will not fully generate the Quality

Without A Name, until we leave the Gate behind.

Christopher Alexander

The quoted statements are actually chapter headers from The Timeless Way of Building. They

read far more like the Taoist (and later Zen) story of the Boy and the Bull which is an allegory of the

process of obtaining enlightenment.

Object Thinking, David West Chapter Two - 33

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 33 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

It is not surprising that computer scientists and software engineers, entrenched in a formalist

culture, find little of value in this aspect of Alexander’s work. You have to wonder, however, how

deeply they understand Alexander’s ideas about patterns if they dismiss what are clearly, for Alexander,

fundamental philosophical presuppositions. Is it not possible (likely) that they are reading into

Alexander’s pattern ideas their own philosophical biases? And, if so, how valuable was Alexander’s

contribution after all?

This example exposes a bias of the author – you cannot claim to understand something, in this

case object thinking and extreme programming unless you are able to understand the form, the

substance, and the presuppositions that support form and substance.

Deciding to be an object thinker or an extreme programmer is a decision to set oneself in

opposition, in very important ways, to mainstream software development thought and practice. It is a

decision likely to result in becoming a member of a minority, using “niche” languages to solve problems

in “non-critical” and “small scale” problem domains. Unless … we can use our knowledge of the

history and philosophy just discussed to effectively wage a true software development revolution.

Object Thinking, David West Chapter Two - 34

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 34 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

The arena of software development is filled with the discarded or dilapidated remains of

“revolutionary” languages, methods, tools, and techniques. It is probably safe to say that any real

revolution will come about only as a result of majority adoption of new ways of thinking, of alternative

world-views and associated philosophical values, i.e., from the establishment of an object culture.

Object Thinking, David West Chapter Two - 35

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 35 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

2 The reader is encouraged to explore the material available at www.squeak.org, both to see the past, present an

future of Squeak and to see additional information on the common philosophical roots behind Squeak and object thinking.

3 Parnas, D.L.. “On the criteria to be used in decomposing systems into modules,” Communications of the ACM,

15(12): 1053-8, December 1972.

4 As taught in every data modeling text book, except some advanced texts on post-relational database design, of

which I am aware.

5 This is an historical observation, not an expression of ethnocentrism or an attempt to claim computing for Europe

and the US. As will be seen in the rest of the discussion this is more of an indictment of the history of computing than a

boast. Clearly the roots of computing and many of the most important contributions to our understanding of computing come

from many different places and cultures. The argument will be made in the next few pages that most of computing, however,

is firmly grounded in a philosophical tradition that arose in Europe and formed the foundation of “the Age of Reason.”

6 Do not confuse formalism with the use of formal tools like mathematics that are employed in the cited fields of

study.

7 Glass, Robert L. Software Creativity. Englewood Cliffs, NJ: Prentice Hall. 1995.

8 McCormick, Michael. Programming Extremism. Communications of the ACM 44(6), June 2001, 109-110.

Unknown
Field Code Changed

Object Thinking, David West Chapter Two - 36

Microsoft Press CONFIDENTIAL 10/16/2016 9:27 AM Page 36 of 36

david west� 10/16/2016 9:26 AM
Deleted: 7/30/2003
david west� 10/16/2016 9:26 AM
Deleted: 12:08 PM

9 Floyd, C., H. Zullighoven, R. Budde, and R. Keil-Slawik (eds.). Software Development and Reality Construction.

 Springer-Verlag. 1992. Also, Dittrich, Yvonne, Christiane Floyd and Ralf Klischewski, Social Thinking, Software Practice.

 MIT Press. 2002.

10 Coyne, Richard. Software Development in a Postmodern Age.

