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                         Chapter V 
 
       Connectionism as an Hermeneutic Model of Mind 
 
 
 
 
 
             "In    my    view,     the    initial  
          intoxification  with  cognitive  science  
          was based on a shrewd hunch:  that human  
          thought  would  turn out to resemble  in  
          significant  respects the  operation  of  
          the   computer,   and  particularly  the  
          electronic serial digital computer ... 
             [However] one of the chief results of  
          the  last few decades has been  to  call  
          into question the extent to which higher  
          human thought processes - those which we  
          might  consider most distinctively human  
          - can be adequately approached in  terms  
          of this particular computational model. 
             ...  the kind of systematic, logical,  
          rational  view of human  cognition  that  
          pervaded   the   early   literature   of  
          cognitive  science  does not  adequately  
          describe  much  of  human  thought   and  
          behavior. [Gardner 85: 43-44] 
 
 
 
     Preceding   chapters  present  a  case  for  cognitive  
 
oriented anthropology in particular that  echoes  Gardner's  
 
observations  on the state of cognitive science in  general. 
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Overall,   current  cognitive  theory  (inside  and  outside  
 
anthropology) is experiencing a resurgence of positions that  
 
are   characterized  as   interpretivist,   hermeneutic,  or  
 
monistic - partially in reaction to the perceived failure of  
 
formalist     (computational)    theories    and     models.   
 
Increasingly,  mind  is  seen  as a kind  of  socio-cultural  
 
construction.  [Coulter 83, Winograd 86]  In many cases this  
 
involves  a  rejection  of  the idea  of  building  a  model  
 
(particularly  one  that can be realized on a  computer)  of  
 
mind  as  well.   It seems to me that this reaction  is  too  
 
extreme. 
 
     Whether   they  prove  to  be  fundamentally  sound  or  
 
unsound,  the  computational models of mind that  have  been  
 
developed  and  explored to date must receive credit  for  a  
 
rapid expansion in our understanding of cognition.  Building  
 
and  testing a model to illustrate a theory quickly  exposes  
 
the flaws and strengths of that theory.   [Ideally] years of  
 
finely  reasoned  debate can be resolved in an instant  upon  
 
the success or failure of an implemented model.   For these,  
 
and  other,  reasons  it  would seem  premature  to  abandon  
 
attempts  at  model building regardless of the  strength  of  
 
one's orientation towards the hermeneutic. 
 
     A  number  of  alternative  foundations  (or  at  least  
 
metaphors) for constructing such models can be found in  the  
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literature of AI. [See West 88 for a synopsis of some of the  



 
leading   alternatives.]   In  this  chapter  one   specific  
 
alternative  will  be presented and extended in  preparation  
 
for  making the case that it offers potential value  to  the  
 
study of cognition in relation to culture. 
 
           
 
Connectionism - Neural Networks 
 
 
     There  is  general  agreement that the human  brain  is  
 
integral to the expression of human mind.   The architecture  
 
of  the brain is radically different from that of a  digital  
 
computer,  and  it seems capable of supporting exactly those  
 
cognitive functions that are difficult if not impossible  to  
 
realize on a computer.  Why not, then, build a computer that  
 
functions analogously to the human brain?  This approach was  
 
in  fact  undertaken in the early years of computer  science  
 
[Pitts  47,  McCulloch  43,  Rosemblatt 62] but  was  almost  
 
totally  abandoned for ten years,  in large part because  of  
 
the criticism of Minsky and Papert. [Minsky 69] 
 
     Recently,  interest  in this approach has been revived,  
 
the criticisms of Minsky and Papert dismissed as having been  
 
directed against a straw-man version of neural networks, and  
 
some initial successes have been experienced. [Rumelhart 87]   
 
Several labels, each reflecting a different  
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perspective  on the general problem,  have been attached  to  
 
this  approach,   including:   neural  computing,   parallel  
 
distributed  processing,  and connectionism.   Connectionism  



 
will  be the label employed in the following discussion  and  
 
most  of  the subtle differences reflected  in  the  various  
 
labels will be ignored. 
 
    A  computer  implementation  of  a  connectionist  model  
 
consists of hundreds or thousands of individual nodes,  each  
 
of which is analogous to a neuron in the human brain.1  Each  
 
node  is connected to a multiplicity of other nodes just  as  
 
individual  brain neurons are connected to others via axonic  
 
and dendritic networks. 
 
     The  functioning  of each node is limited  to  "firing"  
 
(discharging  an  electrical  pulse)  or  not  firing   - in  
 
essence, acting as a simple switch.  Whether or not a neuron  
 
fires is a function of its inputs.  If the input is a direct  
 
stimulus from the outside environment the neuron analog will  
 
 
 
 
 
       1    The  fact  that  computer  models   contain  
     thousands  of  nodes  while  the  brain   contains  
     millions  (and billions of connections) introduces  
     a "scaling" problem.   There is no guarantee  that  
     insights  developed  with small scale models  will  
     "scale  up"  and be directly emulated  in  a  full  
     scale  environment like the brain.   Other aspects  
     of  this  problem will be  noted  throughout  this  
     chapter. 
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fire.  If the input consists of impulses from other nodes in  
 
the network these impulses are summed2, and if they exceed a  
 
threshold  value the neuron fires.    This process  emulates  
 
the operation of synapses in the brain.  [See Figure 1a] 
 
     A complete3 network consists of multiple nodes  arranged  



 
in  a  series  of  layers,  one input  layer  that  receives  
 
stimuli  from the  external world,  several "hidden layers,"  
 
and  one  output  layer  in  which  a  pattern  of   firings  
 
represents  the network's response to the inputs in  a  form  
 
perceptible  to  the  external  world.4   [See  Figure   1b]   
 
 
 
 
 
       2   Summation of inputs is not a simple process.   
     Complications    derive   from    signal    decay,  
     asynchronous  arrival  of  input  signals,   back- 
     propogation properties, potential loops, inhibited  
     inputs,  lack  of simple "layering" in the network  
     architecture, etc.  These technial issues will not  
     be  directly  addressed here except to  note  that  
     they exist are are areas of ongoing research. 
 
       3    A   similar  caveat  must   be   registered  
     concerning  the  depiction  of  the  connectionist  
     network in general.   What appears here is a major  
     simplification that does not deal with a number of  
     very important, but technical, issues.  The thrust  
     of  the argument presented in this dissertaion  is  
     not  dependent  on detailed examination  of  those  
     technical issues and their discussion is  deferred  
     to other times and places. 
 
       4  Layers are determined by the physical  wiring  
     patterns   employed  to  construct  the   network.   
     Although  an ideal situation might have every node  
        [continued next page] 
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Exactly  which nodes in the output layer are triggered is  a  
 
function  of  which input nodes were  stimulated,  and  more  
 
importantly  by  the various firing thresholds of the inter- 
 
connections among nodes in the hidden layers. 
 
     The  threshold  values that must be met or exceeded  by  
 
the summed inputs to a node are variable and may be adjusted  
 
so  that  weak  signals  can  be  amplified,  strong  inputs  



 
weakened,  or inputs completely inhibited.  This variability  
 
in  threshold  values  (usually called  connection  weights)  
 
emulates the synapses of the brain whose variable resistance  
 
to the signals passing along dendrites determines whether or  
 
not a brain neuron fires.   
 
     Connection   weights  are  critical  for  two  reasons.   
 
First,  they  collectively  determine how the  network  will  
 
eventually respond to a given set of inputs.   Second,  they  
 
provide  the mechanism whereby a network can be modified  so  
 
that consistent inputs will produce consistent outputs.  For  
 
example,  if a set of nodes at the input layer are triggered  
 
by a specific stimulus - say a digitized representation of a  
 
 
       [continuation]   connected to every  other  node  
     such  a  scheme is not physically realizable  when  
     the  number  of  nodes  gets  large.    There  are  
     technical   considerations  that   determine   the  
     physical architecture of neural networks that will  
     not be discussed here. [See Hecht-Nielsen 88 for a  
     description of common types.] For our purposes the  
     simple arrangement is Figure 1b is sufficient. 
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person's  face  - and the output layer consists  of  a  lamp  
 
labelled with a person's name,  it is possible to adjust the  
 
connection  weights  of  the network in such a  manner  that  
 
every time Sara's face is input then the lamp next to Sara's  
 
name will be lit. 
 
     Neural  networks  can be "trained" to produce  specific  
 
output  patterns  in response to a range of  specific  input  
 
patterns  by providing feedback5 which causes alteration  in  
 
the  connection weights which,  in turn,  causes the  output  



 
pattern  to  change.    Given  the  correct  algorithm   for  
 
adjusting  connection  weights,  appropriate  feedback,  and  
 
numerous  iterations the network will eventually "learn" the  
 
connection  weights  that produce desired outputs  to  given  
 
stimuli.   [See  McClelland 87 Vol I,  Chapters 7 & 8 for  a  
 
discussion  of algorithms,  usually called "learning rules,"  
 
developed to date.] 
 
     A  famous  example that illustrates how  adjustment  of  
 
connection  weights modifies a network's ability  to produce  
 
consistent  outputs is NETtalk,  developed by Sejnowski  and  
 
Rosenberg,  which  accepts  strings of  letters as input and  
 
 
 
       5  Again,  the specific and technical details of  
     a feedback mechanism are difficult to conceive and  
     implement.    They  will  depend  upon  both   the  
     architecture on which they will be implemented and  
     the  problems to which they will be applied. 
                                                         132 
 
 
produces a series of audible phonemes.  Initially the output  
 
is  random  babble  but  eventually  the  system  begins  to  
 
correlate  the  character inputs with  appropriate  phonemic  
 
outputs, and understandable words are formed.  The system is  
 
able  to achieve a 92 percent accuracy level and produce  an  
 
understandable but somewhat labored verbal rendition  (about  
 
on  par  with  a child's performance) of a page  of  printed  
 
text. [Sejnowski 86] 
 
     Connection   weights  are  not  only  central  to   the  
 
construction   and   operation  of  neural   (connectionist)  
 
computers  but  are fundamental to the  conception  of  mind  



 
embodied  in  that  type  of computer.    The  best  way  to  
 
illustrate  this  importance  is  to  consider   differences  
 
between   formalist   "representation"   and   connectionist  
 
"distributed representation." 
 
 
 
Distributed Representation 
 
 
     As   noted  in  previous  chapters  a  prime  tenet  of  
 
formalist  conceptions of mind involves  the  representation  
 
(as  symbols or tokens) of the external world in the mind of  
 
the  perceiver of that world.  Cognition is taken to be  the  
 
manipulation  of those symbols according to a set of  formal  
 
rules.   Symbols,  in  this scheme,  are discreet  entities.   
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This   conception  is  consistent  with  the  operation   of  
 
conventional serial computers which also manipulate discrete  
 
symbols  according  to a set of rules  (a  program).   In  a  
 
conventional  computer  specific symbols are represented  by  
 
digital   values  stored  in  specific  physical   locations  
 
comprising the computer's "memory." 
 
    In  a  neural computer,  however,  any given  symbol  is  
 
represented by the collectivity of connection weights in the  
 
computer.   Each  symbol is "distributed" across the  entire  
 
system rather than associated with a particular component of  
 
that system. 
 
     A somewhat basic illustration of how the differences in  
 
representation  are reflected in behavioral  characteristics  



 
of  the  system  is a comparison of  the  consequences  that  
 
accrue   when  part  of  a  system  "memory'  is  destroyed.   
 
Eliminate a storage location in a conventional computer  and  
 
you  have eliminated any trace of the symbol stored in  that  
 
location.    In  a  neural  network,   however,  the  entire  
 
collectivity   of  connection  weights  would  need  to   be  
 
destroyed before the symbol would be lost.   Elimination  of  
 
any  single  connection weight can be offset by the  network  
 
simply by adjusting the remaining weights in compensation.   
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     Research  has  shown,  in fact,  that any given set  of  
 
weights can be recovered if a subset of those weights - less  
 
than  a  third - remain and are "fixed" for  the  period  of  
 
recovery. [Hinton 84] This capability of neural networks (in  
 
direct  contrast  to  those of  conventional  computers)  is  
 
reminiscent  of the human brain where it is also possible to  
 
destroy  portions  of  the architecture  without  causing  a  
 
complete loss of its "contents." 
 
     It  could  be argued that connectionist systems do  not  
 
contain any representations at all,  that what is stored  in  
 
the  system  is a "representational complement" of a  symbol  
 
rather than a symbol as such.   Again,  a comparison between  
 
conventional computers and neural computers will  illustrate  
 
this  difference.   In  a  conventional  computer  an  input  
 
pattern  is  compared with and matched to a  stored  pattern  



 
when  that system is said to "recognize" the input  pattern.   
 
In a neural computer no such match takes place.  Instead the  
 
signals generated by the input pattern are "channeled" along  
 
pathways  in the network until they "settle" in those  nodes  
 
whose discharges constitute the output pattern appropriately  
 
responsive to the input pattern. 
 
     Technical  descriptions of distributed  representation,  
 
learning  functions, and pattern recognition capabilities of  
 
neural  networks  involve  various  levels  of  mathematical  
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description,  from simple linear algebra, to probability, to  
 
matrix  algebra,  and  into non-linear  calculus.   [For  an  
 
overview  see Grossberg 88,  Carpenter 87,  Feldman 82,  and  
 
McClelland  and  Rumelhart  86]   Because  mathematics   can  
 
obscure  as well as reveal,  the metaphor of a landscape was  
 
introduced  to facilitate the understanding  of  distributed  
 
representation and of the operation of neural networks. 
 
          "Consider a countryside laden with  with  
          hills  and valleys.   In the valleys lie  
          lakes.  If you pour a bucket of water on  
          a hill, it flows down the hill into  one  
          of the lakes.   No matter where you pour  
          the water,  it will eventually come to a  
          place to rest;  the system of mountains,  
          lakes, and flowing water will eventually  
          reach a stable state.  And just as there  
          are many mountains and lakes,  there are  
          many  different stable states the system  
          can go to. 
             ...neural nets have contours like the  
          hills and valleys in a countryside; they  
          also have stable states.  [Hopfield  86:  
          27-28] 
 
     The  landscape  metaphor  is employed in  two  distinct  
 



ways;  one "passive" in which the topology of the network is  
 
said  to represent a symbol;  and one "active" in  which  it  
 
describes  the  operation  of the network  and  is  actually  
 
representing a procedural complement of a concept.  Although  
 
this distinction is very real, it is seldom made explicit in  
 
connectionist  literature.   Additional  discussion of  this  
 
point will be presented in the next section. 
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     Whether  a given representation in a neural network  is  
 
direct or complementary it is always holistic - that is,  it  
 
is realized by the entire collectivity of connection weights  
 
rather  than  an individual weight or node or small  set  of  
 
weights or nodes. 
 
 
 
Landscapes, Learning, and Complementary Representation 
 
     "Fresh  from the factory" a neural network is a  tabula  
 
rasa  representative of nothing and capable of performing no  
 
tasks.  So too is a conventional computer.   The latter must  
 
be programmed before it can perform useful  functions.   The  
 
former  must  be "trained."  "Training" can  be  illustrated  
 
with a simple analogy. 
 
     Imagine,  for example,  a simple piece of cloth.  As it  
 
lies  flat upon a table it represents nothing (not even  the  
 
concept of nothing or "null").   Pick it up and drop it  and  
 
it  will assume some convoluted shape upon the table top;  a  
 
shape  that  can be thought of as a  representation  of  the  
 
input  (the  process  of  picking it up  and  dropping  it).   



 
Analogs  in  a  neural  network,   1)  the  cloth   ::   the  
 
collectivity of connection weights;  2) the pick-up-and-drop  
 
process  ::  stimulation of certain nodes in the input layer  
 
of the network, and 3) the at-rest state of the cloth :: the  
 
firing of nodes in the output-layer of the network. 
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     If  we  pick up the cloth and drop it again there is  a  
 
negligible  chance that it will assume the same  shape  upon  
 
landing on the table top.   This is true even if we recreate  
 
with  exactitude  the conditions of the  original  maneuver.   
 
Because  the connection weights in a network can be adjusted  
 
(while  the  fibers in the cloth cannot) it is  possible  to  
 
"train" the network to recreate with precision the  original  
 
configuration  even  though  it is highly unlikely  for  the  
 
cloth to re-assume the original shape. 
 
     Network "training" might consist in providing  feedback  
 
to the effect that the second "output" varied from the first  
 
configuration and was therefore "wrong."  (In some instances  
 
the  degree of error might also be part of the feedback.)  A  
 
simple  algorithm6 is applied to each connection  weight  in  
 
the  network  to  adjust  that weight up  or  down  and  the  
 
"training  stimulus" is  re-applied.  This  process  repeats  
 
 
 
 
 
 
       6   A number of these algorithms (usually called  
     training  rules) have been developed.   Hebb  [49]  
     proposed  an averaging rule that has been modified  
     and  generalized  as  a general  delta  (GD)  rule  
     [Rumelhart  86] and a number of other  rules  have  



     been  proposed  and used as suitable  to  specific  
     situations.   Although some rules offer advantages  
     in  certain situations there is reason to  believe  
     that  the  GD  rule  is  sufficient  even  if  not  
     optimally   efficient  to   provide  the   desired 
     "learning" behavior for a neural network. 
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until the network reproduces the original configuration.  If  
 
the   weight  adjusting  algorithms  (training  rules)  were  
 
correctly selected,  the time required  to "learn" (which is  
 
dependent upon the overall scale of the network - number  of  
 
nodes  and  connections)  a given set of behaviors  will  be  
 
significantly reduced. 
 
     Network configurations (the collectivity of  connection  
 
weights)  are usually called E-surfaces.4  During "training"  
 
the E-surface of a network is equated with a  representation  
 
of the input stimulus.   It is possible, however, to train a  
 
given network to "recognize" multiple inputs.  The result is  
 
an E-surface that increases in complexity - its convolutions  
 
simultaneously "representing" multiple inputs. 
 
 
 
 
 
 
 
 
 
       4  "E" for energy,   energy being the analog  of  
     altitude in the landscape metaphor.   An E-surface  
     is characterized by high and low energy  locations  
     (mountains  and  valleys).    When  a  network  is  
     stimulated   with   an  input  the  E-surface   is  
     disturbed, but the operation of connection weights  
     ensures   that  it  will  return  to  a  point  of  
     stability with the energy introduced by the  input  
     having  been  channeled to one of  the  low-energy  
     locales   connected  to  appropriate  output-layer  
     nodes.   [See McClelland and Rumelhart 86 for  the  



     technical  and  mathematical description  of  this  
     process.] 
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     At   the  point  when  a  single  E-surface  begins  to  
 
simultaneously    represent   multiple   (and    potentially  
 
contradictory, like "yes" and "no") inputs, severe damage is  
 
being done to our normal conception of representation; e.g.,  
 
that "X" stands for "Y."  As noted earlier,  however,  there  
 
is  a  second  sense in which "representation"  is  used  in  
 
connectionism,  a  sense where the term more properly refers  
 
to a procedural complement of common-sense representation. 
 
     Specifically,  the  E-surface of the network represents  
 
not the input stimulus directly but the "channeling process"  
 
which  assures  that presentation of that  stimulus  to  the  
 
network  will result in the generation by the network of  an  
 
output deemed appropriate for the stimulus,  e.g., producing  
 
the correct name when presented with a photograph of a face.   
 
It  is  this  second  sense  (or  perhaps  contra-sense)  of  
 
representation that gives rise to the landscape metaphor and  
 
the  metaphorical flow of water over and down that landscape  
 
until  it  reaches the lowest  possible  point,  an  equally  
 
metaphorical lake. 
 
      The  set  of  inputs that a network  has  "learned  to  
 
recognize"  and  the repetoire of "meaningful" outputs  that  
 
the  network  produces  can be considered  as  the  external  
 
environment  of  that  network.   Internally,  the  topology  
 
(configuration  of  connection weights,  landscape)  of  the  
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network  is  most properly considered as  the  complementary  
 
representation  of  the  network's  environment   as-a-whole  
 
rather  than  the  simultaneous  "X stands for  Y"  type  of  
 
representation of a set of stimuli and a repertoire of "IF X  
 
THEN Y" response patterns. 
 
     Network  topology  is  a  complementary  representation  
 
because it "stands for" the process whereby input X  results  
 
in output Y rather than "standing for" X and Y directly.  In  
 
terms of the metaphor, the landscape represents the channels  
 
whereby water is appropriately transported from an arbitrary  
 
point  on  the  surface into one of potentially  many  lakes  
 
rather  than the water drop and the lake.   Network topology  
 
is a representation because it does "stand for" the external  
 
environment of the network.   
 
 
 
 
Additional Aspects of Neural Networks 
 
 
     There  are  six additional aspects of  neural  networks  
 
that  are important to future discussions and which need  to  
 
be briefly introduced. 
 
     1) Although neural networks are realizable in terms  of  
 
hardware  the  topology of the network is a virtual,  not  a  
 
physical,   entity.    Changes   in  the   environment   are  
 
accommodated  by  the  network with changes in  its  virtual  
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topology, not with a physical restructuring of its hardware.   
 
This feature makes a neural network extremely adaptable.  In  



 
contrast  to  an  organism which can be seen  as  a  special  
 
purpose adaptation to its environment, a neural network is a  
 
general purpose, dynamic, adaptation device. 
 
     2)   Neural networks are intrinsically  wholistic.   As  
 
noted  previously,  the network topology is complementary to  
 
the external environment of the network in the same way that  
 
one  piece  of a puzzle is  complementary  to  another.   To  
 
illustrate  this contention it is useful to look at  another  
 
biological model, protein enzymes.   
 
           "The key computing attribute of protein  
          enzymes  is their folded shape.   Recall  
          that recognizing patterns and objects is  
          a   difficult  problem  for   computers.   
          Pattern  recognition,  however,  is  the  
          main activity of protein enzymes.  Their  
          folded  shape  allows these  enzymes  to  
          recognize molecular objects on the basis  
          of   tactile   (touching)   interactions  
          reminiscent of the way a key fits into a  
          lock.    The  switching  action  of  the  
          enzyme  - making or breaking a  covalent  
          bond  - is secondary to the  recognition  
          process.   In effect, the enzyme is both  
          an intelligent and an evolvable  switch.   
            Any computational function that can be  
          implemented using conventional switching  
          elements  (such  as the  McCulloch-Pitts  
          formal neurons) can be implemented using  
          tactilizing processors, and, in general,  
          much more efficiently.  All conventional  
          switches do is recognize simple patterns  
          (such as 11 or 10).  Recognizing complex  
          patterns   requires  networks  of   many  
          simple  switches,   whereas  tactilizing  
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          processors  are capable  of  recognizing  
          complex   spatio-temporal  patterns   by  
          themselves. [Conrad 87: 13-14] 
 
     Although,  strictly speaking,  the topology of a neural  
 
network  is not the "recognition" of an external pattern  it  



 
is  congruent  with the external  environment.   And  it  is  
 
congruent on a whole-to-a-whole basis.   This distinction is  
 
important   because  it  differentiates  a  neural   network  
 
topology   from   a   straightforward   simulacrum.    [This  
 
biological  example  of  wholism will be referred  to  again  
 
later in this chapter.] 
 
     3)   A neural network can function only in response  to  
 
an  environment  that is regular and  recurrent.   As  noted  
 
earlier  the topology of a network is  not  "pre-programmed"  
 
(nor is there any known way to perform such programming), it  
 
"learns"  its  configuration through multiple iterations  of  
 
the  adjustment  process.   It is easy to see that,  if  the  
 
inputs  do  not recur,  iteration  is  impossible,  learning  
 
cannot occur, and no topology is configured. 
 
     Regularity  is a need that is not quite as  apparent  a  
 
need as recurrence,  but it is closely related.  It would be  
 
unreasonable  to  expect  that  a  given  stimulus  will  be  
 
presented  for  each  iteration of the learning  process  in  
 
exactly  the same way.   If the form taken by the  input  is  
 
allowed  too  much  variation,   however,   the  network  is  
                                                         143 
 
 
essentially confronted with a non-recurrent environment.  It  
 
is  difficult  to precisely define the limits  of  allowable  
 
variation  but  Figure Two illustrates why some  constraints  
 
must be placed on variation.   In each of the three examples  
 
it is reasonable to expect the network to "recognize" as the  
 
same object the versions in examples (a) and (b) but not the  



 
examples marked (c). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               Figure Two: Input Variability 
 
 
     4)  Because a network topology is "learned" and because  
 
that  "learning" is  effected in  part by  feedback  (either  
 
internally generated or externally supplied),it is necessary  
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for  that  feedback to be consistent.   This requirement  is  
 
seemingly too obvious to require mention;  it is immediately  
 
apparent  that  inconsistent  feedback  would  prevent   the  
 
network  from ever settling on an appropriate configuration.   
 
However,   the   point  will  become  important   in   later  
 
discussions  when  the performance expected of  networks  is  
 
transported to the natural realm. 
 
     If  the  human  mind,  for example,  is realized  by  a  



 
network  of the type we are discussing,  we will need to  be  
 
able  to  account  for  the fact  that  it  manages  despite  
 
receiving inconsistent feedback.  (Consider the inconsistent  
 
and often contradictory injunctions leveled on children, for  
 
example.)   
 
     If a connectionist model is to be robust,  the need for  
 
consistent  feedback  must  be modified to  allow  for  some  
 
variation or for some sort of hierarchical meta-consistency.   
 
(An  example  would be the consistency provided by  a  moral  
 
code that superceded that provided by an injunction to  obey  
 
laws involved in a logical conflict.) 
 
     5) As presented so far,  there is no way that a  neural  
 
network  can  distinguish between an object and  the  ground  
 
upon  which  that  object exists.    
 
     There  are no intrinsic differences between one node in  
 
a network  and any other nor  between one connection and any  
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other.   There is no intrinsic bias or filter built into the  
 
network  that  cause  it to "pay attention" to a  subset  of  
 
input  nodes  or  to  a  subset  of  processing  nodes   (or  
 
connections).7  Therefore,  both ground and object are equal  
 
sources of information to the network or,  more  accurately,  
 
ground  and object are indistinguishable parts of the  same,  
 
whole, input.   
 
     Differentiation   between  ground  and  object   is   a  
 
necessary     precondition     to    explaining     observed  
 
characteristics  of the human mind like "concentration"  and  



 
"attention."  To provide an adequate model of mind (at least  
 
human  mind), the ability to make ground-object  distinctions  
 
will  need  to  be developed,  ideally by  extension  of  an  
 
existing characteristic of neural nets. 
 
     6)   The  whole  of a neural network  topology  can  be  
 
reconstructed   from   a   subset   of   the   participating  
 
connections.   Specifically,  if a subset of the connections  
 
 
 
 
 
       7  In the case of vision experiments this is not  
     necessarily  true.  A  network may  be  explicitly  
     trained  to recognize features  (edges,  surfaces,  
     etc.) rather than the whole input  pattern.   This  
     does not reflect a limitation of the network.  The  
     situation  arises  because researchers  are  using  
     networks  to emulate processes  (and  consequently  
     the  limitations of those processes) as  developed  
     for serial computers.  [See Marr 82] 
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in  a network are fixed and the remainder of the connections  
 
are  "scrambled"  the network can (and will)  re-create  the  
 
original configuration.   Hinton uses the illustration of  a  
 
room  full  of  students  flipping a switch  on  or  off  in  
 
response  to  a  light on the switch panel.   If  a  certain  
 
number  of  the  switches are permanently fixed  in  the  on  
 
position and the remainder of the network is randomized then  
 
the  subsequent actions of the students in response  to  the  
 
lights  will  result  in  the restoration  of  the  original  
 
configuration. 
 
     At  first  this  characteristic of a network  seems  to  
 
contradict,   at  least  in  part,   the  wholism  discussed  



 
previously.  It seems as if a portion of a configuration can  
 
"stand for" (represent?) the whole.   It must be remembered,  
 
however,  that the configuration is invoked by a  percentage  
 
of nodes N1 through Nn,  not a subset of nodes (N1,  N5, N12  
 
and N103).  What is observed is a consequence of distributed  
 
representation,8  not a manifestation of particularism in an  
 
otherwise wholistic network. 
 
 
       8   One  that is reminiscent of  a  property  of  
     holograms    (another   example   of   distributed  
     representation).   A  hologram  in the form  of  a  
     piece  of photographic film can be cut into  parts  
     and   each  part  will  retain  the   ability   to  
     regenerate  the  whole  image  - with  a  loss  of  
     resolution  inversely proportional to the area  of  
     the fragment. 
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     Neural  or connectionist networks as discussed  so  far  
 
provide the foundation for constructing an alternative model  
 
of  mind but are in and of themselves insufficient.   Neural  
 
networks  provide a model of how cognition (thinking)  might  
 
occur - it focuses on a process.   A model of mind, however,  
 
must also include linkages between that process (the  neural  
 
network)  and the context within which the process operates.   
 
To  accomplish  this  task an  additional  element  will  be  
 
proposed for the neural architecture (following section) and  
 
the  landscape  metaphor will be extended to illustrate  the  
 
functionality of the new element (subsequent section). 
 
 
 
 
 
Constraint Windows 



 
 
 
 
     Current implementations of neural networks provide  for  
 
an  initial assignment of connection weights and a  learning  
 
algorithm  that determines adjustments to those weights as a  
 
function of feedback.  Initial values may be assigned to the  
 
connection  weights,   no  assignments  may  be   made,   or  
 
completely  random assignments may be made. 
 
    Assignment of initial weights does not contribute to the  
 
capability of the network.   In some instances a performance  
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benefit  is  derived;  a judicious  initial  assignment  can  
 
significantly   shorten  the  time  (number  of  iterations)  
 
required for the network to "learn" a given task.   The fact  
 
that a quantitative performance benefit can be derived  from  
 
an  action  (initial weight assignments)  without  making  a  
 
qualitative  difference  in  the  network's capabilities  or  
 
characteristics  will  be  of  potential  use  and  will  be  
 
discussed later in this section. 
 
     The  standard architecture of a neural network  (nodes,  
 
layers,  connections,  connection weights,  feedback,  and a  
 
learning  algorithm) reflects a focus by  connectionists  on  
 
the   electrical  aspects  of  the  brain  to  the  relative  
 
exclusion  of  all  other  aspects.   This  focus  has  been  
 
criticized as reductionistic; it is certainly incomplete. 
 
     Neural (connectionist) approaches are modeled after the  
 
operation of the human brain (our existence proof of  mind).   



 
A quick examination of the brain,  however, reveals the fact  
 
that  neurons and neural connections  are affected in subtle  
 
(sometimes  not  so  subtle)  and  complex  ways  by   brain  
 
chemistry.   The  operation of the neural network (and hence  
 
its internal configuration,  E-surface,  or topology) can be  
 
enhanced,  inhibited, and totally disrupted by alteration of  
 
the chemical environment of that network.   A more  complete  
 
model  of a neural network (assuming the brain to be such  a  
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network)  would  therefore allow for the influence  of  what  
 
Bergland  [85]  calls  an  "interwoven  fabric  of  chemical  
 
threads," in a brain that is a "gland." 
 
     Bergland  reviews  the development of ideas  about  the  
 
brain,  both  its structure and its place as the seat of the  
 
mind,  from Plato to the present.   He notes the development  
 
of the "electrical" paradigm - the notion that the brain  is  
 
a  complex electrical circuit the configuration of which and  
 
the passage of electronic signals through which  constitutes  
 
"thought"   - and  challenges  this  paradigm  with   recent  
 
findings in neuro-physiology and neuro-endocrinology. 
 
     A key observation for Bergland is the architecture of a  
 
synapse,  "the grasping claw," that is the central component  
 
in  the  electrical circuitry of  the  body.   Synapses  are  
 
"circuit breakers" in that there is a discontinuity in every  
 
"brain circuit"  at the point of a synapse,  a discontinuity  
 
that  must be bridged the way a spark jumps across space  in  
 
many familiar circumstances.   Synaptic closure - ability to  



 
complete  the  circuit by sparking - is a function of  brain  
 
chemistry.     Different   chemicals   (actually    hormonal  
 
molecules)  inhibit or enhance the ability of the synapse to  
 
close. 
 
     Although   Bergland   does  not   directly   refer   to  
 
connectionism  or  neural networks it seems clear  from  his  
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general  arguments that he would find such approaches to  be  
 
as  reductionistic  as other computational models  of  mind.   
 
Most   likely   he  would  object  to  the  idea  that   the  
 
configuration  of a network arises from nothing more than  a  
 
function of the weighted firings of nodes. He probably would  
 
insist that (to be complete) the model would have to include  
 
an  element that simulated brain hormones and their  ability  
 
to act as "gatekeepers" determining which neurons will  fire  
 
and in which circumstances.   
 
     In  one sense Bergland is proposing nothing more than a  
 
neural  network  the  topology of  which  is  determined  by  
 
chemistry  (hormones) in addition to electricity.   However,  
 
including  a mechanism in a neural network that emulates  or  
 
accounts   for   brain  chemistry   (hormones)   will   have  
 
significant  consequences  for model  building.   First,  it  
 
emphasizes  the role of pattern recognition  (the  wholistic  
 
pattern recognition of enzymes noted previously): 
 
          "As scientists accept this new paradigm,  
          the  primary mechanisms  of  intelligent  
          thought must be viewed differently.  The  
          mind is made pattern dependent and comes  
          to  share  in the ubiquitous  secret  of  



          evolutionary      survival:      pattern  
          recognition.  [Bergland 85: 108-109] 
 
More radical is a redefinition of the locus of cognition: 
 
          "The  mechanisms  of the mind  are  thus  
          released from the conceptual confines of  
          the  reductionistic  left  brain.    The  
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          mechanisms that drive thought are  found  
          all  over  the body and,  wherever  they  
          live, they  function  at  their  highest  
          level  by   recognizing  the   molecular  
          patterns  of the combination of hormones  
          that  modulate thought."  [Bergland  85:  
          109] 
 
     As  radical as Bergland's ideas may seem,  they can  be  
 
accommodated  with  a  relatively minor  change  in  network  
 
architecture - replacement of "thresholds" with a  mechanism  
 
we will label a "constraint window."   
 
     Whether or not a node in a standard neural network will  
 
fire  is  determined by summing the inputs (multiplied  with  
 
the connection weight assigned to that input connection)  to  
 
that node.  If the sum exceeds a certain threshold9 then the  
 
node  will  fire.  Where a threshold provides only  a  floor  
 
value,  a  constraint  window  will provide both  floor  and  
 
ceiling values.   A given node will fire only if the  summed  
 
inputs  exceed the floor value but do not exceed the ceiling  
 
value.  [Figure Three provides a graphical illustration of a  
 
threshold  (a),  several examples of constraint windows  (b)  
 
(c) (d) and (e),  and a revised diagram of the components in  
 
a neural network (f).] 
 
 
       9    Thresholds   are  based  on  an   arbitrary  
     selected  range values,  usually from 0 to  1.   A  



     threshold is exceeded if the summed input currents  
     exceed the value assigned to the  threshold.   The  
     range  of possible input measures will be referred  
     to as the input value range or value scale. 
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     A  constraint window with a relatively broad range that  
 
is congruent with the upper end of the value scale [See  fn.  
 
9   on   preceeding  page.]   functions  identically  to   a  
 
threshold.  [Figure  3(b)]  How windows defined  with  other  
 
parameters  affect  the operation of a network can  best  be  
 
understood in terms of the landscape metaphor.   
 
     A  window with a narrow range centered near the top  of  
 
the scale has the effect of creating a semi-permanent (until  
 
the  parameters  of the window are changed)  "peak"  in  the  
 
network's topology.  [Figure 3(c)]  One with a narrow  range  
 
centered  near  the bottom of the scale creates a  "valley."  
 
[Figure  3(d)]  And,  one with a moderate range centered  at  
 
the  mid-point of the scale creates a node that will  always  
 
(very high probability) fire, one that is locked in the "on"  
 
position.   Closing  the window locks a node into the  "off"  
 
position. 
 
     It  is important to remember that although the specific  
 
effect  of a constraint window is on the performance  of  an  
 
individual node,  the general effect is to "pre-dispose" the  
 
virtual topology (configuration) of the network as a  whole.  
 
"Pre-disposition" in the sense used here is identical to the  
 
pre-setting  of  connection weights or the "freezing"  of  a  
 
subset of nodes in order to "recover" a configuration.  [See  
 
preceding  discussion.]   No material change is made in  the  
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operational  characteristics  of  the network  by  adding  a  
 
constraint  window,  but,  as  we  will see  later,  it  has  
 
important effects on the observed behavior of a network. 
 
     [This  discussion of constraint windows omits  numerous  
 
important details concerning their implementation and actual  
 
operation.   Investigation  of these details remains  to  be  
 
undertaken  and is noted as an area for further research  in  
 
Chapter Seven.] 
 
 
 
Extending the Landscape Metaphor 
 
 
     When constraint windows are added to the architecture a  
 
mechanism is provided whereby network topology is influenced  
 
by   "secondary  factors."   ("Secondary"  does  not   imply  
 
inferior or less significant - it implies "additional.")  As  
 
discussed  in  Chapter  IV,   the  primary  aspect  of   the  
 
hermeneutic  conception of mind requires that cognition be a  
 
function  of the context in which it takes place as well  as  
 
of the specifics of an individual cognitive act.  Constraint  
 
windows provide the mechanism (alluded to by Geertz  [Geertz  
 
73:82]) whereby context can be accommodated. 
 
     Given the mechanism,  how then to describe the context?   
 
What are the "secondary factors" that need to be recognized?   
 
Bergland's glandular chemistry is one approach to defining a  
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set of secondary factors.   Chemistry, however, is too close  



 
to being a mechanism itself to properly be considered as the  
 
kind   of   secondary  factor  implied  (required)  by   the  
 
hermeneutic  concept of mind.    
 
     At least six broad notions of a secondary factor can be  
 
distilled from the hermeneutic concept of mind as  discussed  
 
in   previous  chapters.    Identifying  those  notions  and  
 
relating  them to the neural network model as  developed  so  
 
far  can  best  be accomplished by employing  the  landscape  
 
metaphor already introduced. 
 
     A  natural  topology,  the  surface  of  a  planet  for  
 
example,  does not exist in isolation.   It is determined in  
 
part  by  the underlying geology of the planet  and  by  the  
 
environment  that  works upon that surface.   It would  seem  
 
reasonable,  therefore,  to extend the topology metaphor  of  
 
neural networks by analogy to a natural topology. 
 
     Beginning  with  the  most  basic,  the  six  secondary  
 
factors are: 
 
        Cellular - [the "planetary core"]  Bergland [85] and  
 
     Conrad   [87]   discuss  in  detail  the   "information  
 
     processing"  capabilities of enzymes and  cellular  (or  
 
     sub-cellular)   entities.    Many  of  the  constraints  
 
     imposed  on  thought originate and  are  influenced  by  
 
     activity  at  this level.   Examples range  from  basic  
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     sensitivity  to stimulii (a fundamental constraint)  to  
 
     the  effects  on cognitive activity of  an  "adrenaline  
 
     rush."  



 
        Organismic   - ["tectonic  plates"]   Maturana   and  
 
     Varela [87] present a carefully developed argument that  
 
     roots  cognition  and cognition based behavior  in  the  
 
     characteristics  of  cells and the organisms  that  are  
 
     structured  collections  of  those  cells.   The  major  
 
     portions  of  their argument are  focused  on  organism  
 
     level  phenemona.   Winograd and Flores [86] extend the  
 
     arguments  of Maturana and Varela specifically  to  the  
 
     modeling of cognition in AI. 
 
       In   addition   to   demonstrating   how   organismic  
 
     organization  affects cognition and behavior,  Maturana  
 
     and   Varela   show  the  arbitrary   nature   of   our  
 
     classification    of   behavior   into    "intelligent,  
 
     cognitive,  and  aware"  on one hand and  "instinctive,  
 
     stimulus-response, and non-intelligent" on the other. 
 
       Although  specifics  of their arguments are  open  to  
 
     challenge,  their  general  argument  - that  so-called  
 
     higher functions like  cognition are constrained by the  
 
     structure of the organism (which is reflective of  both  
 
     its  ontogeny  and phylogeny) in which they occur  - is  
 
     readily accepted. 
                                                         157 
 
 
        Sensual -  ["planetary crust"]  This is the level of  
 
     the five known senses and the perception data that they  
 
     feed  into the mind.   It is the acknowledged  starting  
 
     point  for  most models of cognition.   It is also  the  
 
     focus of some of the major philosophical debates on the  



 
     nature  of  mind  and  its  relation  to  the  external  
 
     environment. 
 
       For  our  purposes two aspects of this level  are  of  
 
     special  relevance;  its  apparent complexity  and  the  
 
     large     percentage   of   it   which   escapes    our  
 
     "attention."    One major focus of AI research  can  be  
 
     characterized   as   the  emulation  of   the   sensory  
 
     capabilities of human beings; vision research being the  
 
     most prominent example.   
 
       Experience in vision research confirms the complexity  
 
     involved  in  simple sensory  recognition  of  external  
 
     stimuli.   This  complexity  is evident even  when  the  
 
     problem  is  restricted  to  that  subset  of  external  
 
     stimuli  paid conscious attention.   For  example,  the  
 
     complexity  involved  in  the problem  of  sensing  the  
 
     keyboard  and monitor of the computer that is  used  to  
 
     write  this  paragraph pales in comparison to the  vast  
 
     sum  of sensation that is being "ignored" - voices  out  
 
     the  window,  my son practicing piano  downstairs,  the  
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     feel  of the chair against my thighs,  and the  objects  
 
     intruding via peripheral vision. 
 
       The  fact  that I can enumerate (partly)  the  senory  
 
          information  received  outside  of  my   attention  
 
          sphere indicates that it is present whether or not  
 
          I  pay  attention to them.   It is  reasonable  to  
 
          assume  that  "background sensations" continue  to  



 
          play  a  role  in the shaping  of  cognition  even  
 
          though they lack "attention."  This point will  be  
 
          discussed further in the next section. 
 
        Cultural  - ["geography"]   This  is  the  level  of  
 
     central  importance to this thesis.   The heart of  the  
 
     hermeneutic  argument involves the social  construction  
 
     of meaning,  the cultural parameters of cognition,  and  
 
     the  behavior-symbol-cognition  associations  that  are  
 
     empirically  evident.   Details of this level have been  
 
     and  will be presented throughout the thesis. 
 
        Habitual - ["landscape"]  Individual performance and  
 
     individual  thought  exhibit  an  individual  level  of  
 
     consistency  - habits.   Like the cultural  level,  the  
 
     habitual  level is implicit in all of  the  discussions  
 
     herein.   Habits  are  important  not  only  for  their  
 
     proactive  role  in shaping cognition but also  as  the  
 
     primary  source  of  individual  variation.    Although  
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     variation  is introduced at every level (no two  people  
 
     have  identical DNA,  organisms share phylogeny but not  
 
     ontogeny,  etc.) the most obvious variability occurs at  
 
     this level. 
 
        Analytic  - ["architecture"]  Just as  the  man-made  
 
     environment  exists  as  a thin veneer on  the  natural  
 
     landscape,  the  analytic  layer represents  that  thin  
 
     veneer of cognitive activities that are popularly known  
 
     as  "thinking."  This is the realm of  "book  learning"  



 
     and  of deliberative thought.   It is also  that  realm  
 
     that  has  been the focus of early AI  efforts  (Simon,  
 
     Newell,  Minsky,  et. al.), mainstream linguistics, and  
 
     cognitive    anthropology.     From   the   hermeneutic  
 
     perspective the chief contribution of those efforts has  
 
     been in demonstrating how thin indeed is the veneer  of  
 
     analytic thought. 
 
 
     Two   general  points  must  be  raised  regarding  the  
 
extended  metaphor  and its  proposed  levels.   First,  the  
 
relationship  among  levels is not deterministic nor  is  it  
 
hierarchical.  All levels operate simultaneously.  The point  
 
of  relating  secondary factors in terms  of  the  landscape  
 
metaphor  employed in explaining neural networks was to show  
 
the  essential operational unity of each factor  in  shaping  
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network performance.   However convenient it may be to speak  
 
of  each influence as if it were isolated from  the  others,  
 
such a perspective is illusory. 
 
     Second,  the  use of metaphorical levels to  illustrate  
 
multiple  axes  of  influence on  cognition  should  not  be  
 
confused   with   "stratigraphic"  models  as  defined   and  
 
criticized   by  Geertz.   [Geertz  73:   37-45]    Specific  
 
differences include the existence of individual variation at  
 
every  level of the metaphor,  the lack of any  hierarchical  
 
relationship  of  levels,  and  the fact that  no  level  is  
 
"explainable"  in  terms  of "lower"  levels.   Instead  the  



 
metaphor  is  intended to illustrate the manner in  which  a  
 
variety  of essentially independent influences  can  operate  
 
simultaneously to shape the empirical features of a specific  
 
phenomenon. 
 
     The  essential components have now been introduced  and  
 
the  remaining  task  is to assemble them  into  a  sensible  
 
model. 
 
 
Model of Mind 
 
 
     Presentation  of  the model will consist in part  of  a  
 
summary of preceding  sections,  in part of a description of  
 
what might be called architectural attributes,  and in  part  
 
of a description of operational characteristics. 
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     The  physical  architecture underlying the model  is  a  
 
densely  connected  neural  network  consisting  of  layered  
 
nodes,  each  node  capable  of receiving signals  from  and  
 
sending  signals  to  an arbitrary number  of  other  nodes.   
 
Whether  the input signals are sufficient to cause a node to  
 
emit  a  signal is a function of a thresholded sum  and  the  
 
operation of a constraint window.  Except for the constraint  
 
window  this  architecture  is a  standard  neural  network.   
 
     More  important  than  the  details  of  the   physical  
 
architecture  is  the  capability of  that  architecture  to  
 
perform  as  a  generator of a virtual topology which  is  a  
 
wholistic  and  simultaneous  representation  of  an   input  
 
pattern  and a representational complement of that  pattern.   



 
A  representational complement is the set of potentials that  
 
assure  a  given  input pattern will  yield  an  appropriate  
 
output pattern. 
 
     In  metaphorical terms the mechanism can be viewed as a  
 
generator of a topological surface that constantly varies as  
 
a  function  of received inputs - much the same way  that  a  
 
flag  constantly  assumes  a different  topology  under  the  
 
influence of a breeze.  Network response need not be passive  
 
and  random  however.   Given regularity of  input  and  the  
 
presence  of topological constraints the virtual surface can  
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exhibit  predictable  behavior just as a sail will  form  an  
 
airfoil given a steady breeze and appropriate line tension. 
 
     Addition  of  constraint windows to  a  typical  neural  
 
architecture  was  prompted  by the desire  to  account  for  
 
additional influences (e.g., chemical-hormonal) which  would  
 
allow  retention  of  the significance of the brain  as  the  
 
"seat   of   cognition"  without  the  need  to   impose   a  
 
reductionist  separation  of the brain  from  its  immediate  
 
milieu or the environment as a whole. 
 
     A   major   side  effect  of  the   constraint   window  
 
architecture   is  the  inability   to   differentiate,   in  
 
principle,  between  electro-chemical activity in the brain,  
 
in  the central nervous system,  or in the  sensory  organs.   
 
Further,  it  could  be argued that the pattern  recognition  
 
capabilities  of  the architecture differ from those  of  an  



 
enzyme (or enzymatic tactile processor [Conrad 87]) only  by  
 
virtue  of  being general rather than special  purpose.   In  
 
essence  this  results  in  a  mind  whose  dimensions   are  
 
conterminous with  those  of  the  body  with  which  it  is  
 
associated.    This   attribute   of  the  expanded   neural  
 
architecture   is  consistent  with  the  concept  of   mind  
 
presented by Maturana and Varela as well as  Bergland.  [See  
 
above.] 
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     There are five operational characteristics of the model  
 
that  need  to  be  introduced and that  will  complete  the  
 
description of the model. 
 
     1)   Existing  neural computers are operated  in  fixed  
 
intervals  and  address specific problems.   While  this  is  
 
satisfactory  for  experimentation it should be  made  clear  
 
that a necessary operational characteristic of the  proposed  
 
model is its ability to function in a continuous mode.  Just  
 
as  the human mind is always "on" so too must be the  neural  
 
network.   A corollary to this characteristic is the need to  
 
accommodate  to  a  continually  changing  (though  regular)  
 
pattern  of inputs.  (Neither of these  characteristics  are  
 
unrealizable,  but  both face some definite implementational  
 
difficulties.) 
 
     2)    As  depicted  the  model  will  be   continuously  
 
responding to a wide range of inputs (effectively the entire  
 
sensory   and  physiological  environment).    An   absolute  



 
requirement,  if the network is to function at all,  is that  
 
the environment exhibit regularity.   It is likely, however,  
 
that  there will be differential levels of  regularity.   In  
 
human   terms:    inputs  from  autonomous  nervous   system  
 
functions  like  breathing  will be far  more  regular  than  
 
inputs from the optic nerve. 
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     A   consequence  of  differential  regularity  in   the  
 
environment  is (apparently) a similar differential  in  the  
 
performance  of the network.   In architectural terms, there  
 
are  no  attributes that would  allow  this  differentiation  
 
since  all  nodes,   connections,  connection  weights,  and  
 
constraint  windows  are  alike  and  operate  on  identical  
 
principles.   The  virtual topology,  however,   can exhibit  
 
this  characteristic  in the sense that some  "features"  of  
 
that  topology (hills and valleys) will be  more  persistent  
 
than  others.   This aspect was illustrated by the  extended  
 
metaphor introduced earlier. 
 
     When   operating   a  neural  network   is   constantly  
 
responding  to  stimuli.    In  descending  order  from  the  
 
analytic  each  level  provides input that  is  increasingly  
 
regular  (consistent).   Inputs from the analytic level  are  
 
highly variable (change with great frequency) while those at  
 
the cellular level occur with evolutionary  slowness.   When  
 
this differential in variability is realized in terms of the  
 
extended   network  architecture,   it  has  the  effect  of  



 
providing  a  high-regularity "ground"  against  which  low- 
 
regularity objects can be distinguished. 
 
     Differential regularity has two important side effects.   
 
First,  high-regularity  inputs  - once  established  - have  
 
potential equivalence to "pre-setting" connection weights in  
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standard  neural  networks.   High-regularity  inputs  could  
 
(need not,  but could) enhance the networks performance when  
 
"learning"   low-regularity   input    patterns.     Second,  
 
differential  regularity offers a partial explanation of the  
 
"attention"  phenomenon  - the tendency to  focus  conscious  
 
awareness on the least regular of inputs. 
 
     3)   Any  given  configuration of the  network  can  be  
 
invoked  (or maintained) by "locking" a  sufficiently  large  
 
subset  of the nodes participating in that configuration  to  
 
their appropriate states. [See above.]  If a given subset of  
 
inputs is of sufficiently high-regularity that they have the  
 
effect  of "locking" the corresponding set of network  nodes  
 
then that subset of inputs can be considered as a functional  
 
replacement of the greater pattern.   This could be true for  
 
a specific case or in general.  Subsets of this type will be  
 
important   in  the  next  chapter  and  will  be   labelled  
 
"kernels." 
 
     4)   The model provides for dimensional parallelism  in  
 
the sense that all six of the metaphorical sources of inputs  
 
operate on the network simultaneously.   Existing models  of  
 
neural  networks  essentially simulate the operation of  the  



 
focused  consciousness  of  mind - i.e.,  they  focus  on  a  
 
specific set of inputs for a particular problem.   A network  
 
of the type proposed would place conscious processing inputs  
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in  a  context of non-conscious  inputs,  providing  a  more  
 
accurate simulation of human cognitive processing. 
 
     5)   By  virtue of being "housed  in"  (or conterminous  
 
with) a physical body,  mind - as defined here - encompasses  
 
a  mechanism for interacting with the external  environment.   
 
It  is  possible to modify that environment and in so  doing  
 
modify  the inputs from that environment to either  increase  
 
or    decrease   their   regularity.     This    operational  
 
characteristic  will also receive significant  attention  in  
 
the next chapter. 
 
     The  preceding  model of mind is derived from  existing  
 
neural network models but makes significantly greater claims  
 
for  their  capabilities  - based  mostly  on  the  proposed  
 
addition  of constraint window mechanisms to those models  -  
 
and  is therefore vulnerable to criticism until such time as  
 
appropriate networks can be built and demonstrated. 
 
     "Proving"  a  model  of the type proposed was  not  the  
 
intent.   The point has been to present a model that is,  in  
 
principle, conceptually feasible even if not yet realizable.   
 
Further  it is argued that such a model is  compatible  with  
 
the  demands of the hermeneutic conception of mind and  that  
 
it  could  be used to support hermeneutic arguments  in  the  
 
same  manner as conventional computer models have been  used  



 
to support the formalist position vis-a-vis mind. 
                                                         167 
 
 
     This chapter presented the foundation and the technical  
 
components  of  the  argument.  The next  will  address  the  
 
utility   of  the  model  in  explaining  or   understanding  
 
anthropological issues. 
 
 
 
 


